998 resultados para t lymphocyte receptor
Resumo:
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Resumo:
Most NK1.1+ T (NKT) cells express a biased TCRalphabeta repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.
Resumo:
Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.
Resumo:
Glucagon-like peptide-1 stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor that activates the adenylyl cyclase pathway. We previously demonstrated that heterologous desensitization of the receptor by protein kinase C correlated with phosphorylation in a 33-amino acid-long segment of the receptor carboxyl-terminal cytoplasmic tail. Here, we determined that the in vivo sites of phosphorylation are four serine doublets present at positions 431/432, 441/442, 444/445, and 451/452. In vitro phosphorylation of fusion proteins containing mutant receptor C-tails, however, indicated that whereas serines at position 431/432 were good substrates for protein kinase C (PKC), serines 444/445 and 451/452 were poor substrates, and serines 441/442 were not substrates. In addition, serine 416 was phosphorylated on fusion protein but not in intact cells. This indicated that in vivo a different PKC isoform or a PKC-activated kinase may phosphorylate the receptor. The role of phosphorylation on receptor desensitization was assessed using receptor mutants expressed in COS cells or Chinese hamster lung fibroblasts. Mutation of any single serine doublet to alanines reduced the extent of phorbol 12-myristate 13-acetate-induced desensitization, whereas substitution of any combination of two serine doublets suppressed it. Our data thus show that the glucagon-like peptide-1 receptor can be phosphorylated in response to phorbol 12-myristate 13-acetate on four different sites within the cytoplasmic tail. Furthermore, phosphorylation of at least three sites was required for desensitization, although maximal desensitization was only achieved when all four sites were phosphorylated.
Resumo:
There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.
Resumo:
Este proyecto presenta el diseño, test y validación de una cabecera de recepción multiconstelación y multifrecuencia para Sistemas de Navegación Global por Satélite (GNSS). El receptor presentado ha sido diseñado para adquirir las bandas E5/L5 y E1/L1 de los sistemas Galileo y NAVSTAR-GPS. Para trasladar en frecuencia las dos bandas a la vez, se implementa un receptor con arquitectura superheterodina basado en un mezclador de rechazo a frecuencia imagen (IRM). Medidas de ambos sistemas han sido realizadas validando el correcto funcionamiento del receptor en la banda E1/L1. Para ello no sólo se han adquirido los satélites de la constelación GPS, sino que además se han adquirido con éxito los satélites GIOVE-A/B utilizados en la fase de validación en órbita del sistema europeo Galileo.
Resumo:
Este proyecto se centra en el análisis de señales GPS, utilizando un receptor software desarrollado con Matlab en un proyecto de investigación para la Agencia Espacial Europea (ESA), llevado a cabo por parte del departamento de Telecomunicaciones e Ingeniería de Sistemas de la ETSE. Este software utiliza técnicas de procesado de señal de alta sensibilidad (HS-GNSS) que permite al usuario determinar su posición en entornos de difícil propagación como puede ser el caso de los escenarios interiores. Los datos experimentales se analizan en función del nivel de multipath que afecta a la señal de cada uno de los satélites, y la degradación que los escenarios interiores provocan en las señales, a causa del mobiliario, paredes, personas, etc. Para analizar los datos experimentales, se ha utilizado una métrica presentada en el congreso internacional EuCAP 2009, con la que es posible caracterizar las señales en función del nivel de multipath.
Resumo:
IL-2 plays a pivotal role in regulating the adaptive immune system by controlling the survival and proliferation of regulatory T (Treg) cells, which are required for the maintenance of immune tolerance. Moreover, IL-2 is implicated in the differentiation and homeostasis of effector T-cell subsets, including T(H)1, T(H)2, T(H)17, and memory CD8+ T cells. The IL-2 receptor is composed of 3 distinct subunits, namely the alpha (CD25), beta (CD122), and gamma (gammac) chains. Of crucial importance for the delivery of IL-2 signals to Treg cells is the expression of CD25, which, along with CD122 and gammac, confers high affinity binding to IL-2. Notably, recent findings suggest a novel role for CD25, whereby CD25 molecules on Treg cells and possibly other cells are capable of influencing T-cell homeostasis by means of IL-2 deprivation. This review explores these findings and integrates them into our current understanding of T-cell homeostasis.
Resumo:
The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of <or= 5 mg.
Resumo:
In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.
Resumo:
Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.
Resumo:
Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.