918 resultados para sustainable transport role
Resumo:
The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.
Resumo:
The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors.
Resumo:
Nicotianamine (NA) occurs in all plants and chelates metal cations, including FeII, but reportedly not FeIII. However, a comparison of the FeII and ZnII affinity constants of NA and various FeIII-chelating aminocarboxylates suggested that NA should chelate FeIII. High-voltage electrophoresis of the FeNA complex formed in the presence of FeIII showed that the complex had a net charge of 0, consistent with the hexadentate chelation of FeIII. Measurement of the affinity constant for FeIII yielded a value of 1020.6, which is greater than that for the association of NA with FeII (1012.8). However, capillary electrophoresis showed that in the presence of FeII and FeIII, NA preferentially chelates FeII, indicating that the FeIINA complex is kinetically stable under aerobic conditions. Furthermore, Fe complexes of NA are relatively poor Fenton reagents, as measured by their ability to mediate H2O2-dependent oxidation of deoxyribose. This suggests that NA will have an important role in scavenging Fe and protecting the cell from oxidative damage. The pH dependence of metal ion chelation by NA and a typical phytosiderophore, 2′-deoxymugineic acid, indicated that although both have the ability to chelate Fe, when both are present, 2′-deoxymugineic acid dominates the chelation process at acidic pH values, whereas NA dominates at alkaline pH values. The consequences for the role of NA in the long-distance transport of metals in the xylem and phloem are discussed.
Resumo:
A mechanistic model for lactose/H+ symport via the lactose permease of Escherichia coli proposed recently indicates that the permease must be protonated to bind ligand with high affinity. Moreover, in the ground state, the symported H+ is shared between His-322 (helix X) and Glu-269 (helix VIII), whereas Glu-325 (helix X) is charge-paired with Arg-302 (helix IX). Substrate binding at the outer surface induces a conformational change that leads to transfer of the H+ to Glu-325 and reorientation of the binding site to the inner surface. After release of the substrate, Glu-325 is deprotonated on the inside because of rejuxtapositioning with Arg-302. To test the role of Arg-302 in the mechanism, the catalytic properties of mutants Arg-302→Ala and Arg-302→Ser were studied. Both mutants are severely defective in active lactose transport, as well as in efflux or influx down a concentration gradient, translocation modes that involve net H+ movement. In marked contrast, the mutants catalyze equilibrium exchange of lactose and bind ligand with high affinity. These characteristics are remarkably analogous to those of permease mutants with neutral replacements for Glu-325, a residue that plays a direct role in H+ translocation. These observations lend strong support for the argument that Arg-302 interacts with Glu-325 to facilitate deprotonation of the carboxylic acid during turnover.
Resumo:
Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies.
Resumo:
Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics.
Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development
Resumo:
The trace metal copper (Cu) plays an essential role in biology as a cofactor for many enzymes that include Cu, Zn superoxide dismutase, cytochrome oxidase, ceruloplasmin, lysyl oxidase, and dopamine β-hydroxylase. Consequently, Cu transport at the cell surface and the delivery of Cu to intracellular compartments are critical events for a wide variety of biological processes. The components that orchestrate intracellular Cu trafficking and their roles in Cu homeostasis have been elucidated by the studies of model microorganisms and by the characterizations of molecular basis of Cu-related genetic diseases, including Menkes disease and Wilson disease. However, little is known about the mechanisms for Cu uptake at the plasma membrane and the consequences of defects in this process in mammals. Here, we show that the mouse Ctr1 gene encodes a component of the Cu transport machinery and that mice heterozygous for Ctr1 exhibit tissue-specific defects in copper accumulation and in the activities of copper-dependent enzymes. Mice completely deficient for Ctr1 exhibit profound growth and developmental defects and die in utero in mid-gestation. These results demonstrate a crucial role for Cu acquisition through the Ctr1 transporter for mammalian Cu homeostasis and embryonic development.
Resumo:
The transporter associated with antigen processing (TAP) comprises two subunits, TAP1 and TAP2, each containing a hydrophobic membrane-spanning region (MSR) and a nucleotide binding domain (NBD). The TAP1/TAP2 complex is required for peptide translocation across the endoplasmic reticulum membrane. To understand the role of each structural unit of the TAP1/TAP2 complex, we generated two chimeras containing TAP1 MSR and TAP2 NBD (T1MT2C) or TAP2 MSR and TAP1 NBD (T2MT1C). We show that TAP1/T2MT1C, TAP2/T1MT2C, and T1MT2C/T2MT1C complexes bind peptide with an affinity comparable to wild-type complexes. By contrast, TAP1/T1MT2C and TAP2/T2MT1C complexes, although observed, are impaired for peptide binding. Thus, the MSRs of both TAP1 and TAP2 are required for binding peptide. However, neither NBD contains unique determinants required for peptide binding. The NBD-switched complexes, T1MT2C/T2MT1C, TAP1/T2MT1C, and TAP2/T1MT2C, all translocate peptides, but with progressively reduced efficiencies relative to the TAP1/TAP2 complex. These results indicate that both nucleotide binding sites are catalytically active and support an alternating catalytic sites model for the TAP transport cycle, similar to that proposed for P-glycoprotein. The enhanced translocation efficiency of TAP1/T2MT1C relative to TAP2/T1MT2C complexes correlates with enhanced binding of the TAP1 NBD-containing constructs to ATP-agarose beads. Preferential ATP interaction with TAP1, if occurring in vivo, might polarize the transport cycle such that ATP binding to TAP1 initiates the cycle. However, our observations that TAP complexes containing two identical TAP NBDs can mediate translocation indicate that distinct properties of the nucleotide binding site per se are not essential for the TAP catalytic cycle.
Resumo:
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 μm NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 μmol m−2 s−1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings.
Resumo:
All peroxisomal proteins are nuclear encoded, synthesized on free cytosolic ribosomes, and posttranslationally targeted to the organelle. We have used an in vitro assay to reconstitute protein import into pumpkin (Cucurbita pepo) glyoxysomes, a class of peroxisome found in the cotyledons of oilseed plants, to study the mechanisms involved in protein transport across peroxisome membranes. Results indicate that ATP hydrolysis is required for protein import into peroxisomes; nonhydrolyzable analogs of ATP could not substitute for this requirement. Nucleotide competition studies suggest that there may be a nucleotide binding site on a component of the translocation machinery. Peroxisomal protein import also was supported by GTP hydrolysis. Nonhydrolyzable analogs of GTP did not substitute in this process. Experiments to determine the cation specificity of the nucleotide requirement show that the Mg2+ salt was preferred over other divalent and monovalent cations. The role of a putative protonmotive force across the peroxisomal membrane was also examined. Although low concentrations of ionophores had no effect on protein import, relatively high concentrations of all ionophores tested consistently reduced the level of protein import by approximately 50%. This result suggests that a protonmotive force is not absolutely required for peroxisomal protein import.
Resumo:
Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1–L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins. rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.
Resumo:
The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine −3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.
Resumo:
Gga proteins represent a newly recognized, evolutionarily conserved protein family with homology to the “ear” domain of the clathrin adaptor AP-1 γ subunit. Yeast cells contain two Gga proteins, Gga1p and Gga2p, that have been proposed to act in transport between the trans-Golgi network and endosomes. Here we provide genetic and physical evidence that yeast Gga proteins function in trans-Golgi network clathrin coats. Deletion of Gga2p (gga2Δ), the major Gga protein, accentuates growth and α-factor maturation defects in cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. Cells carrying either gga2Δ or a deletion of the AP-1 β subunit gene (apl2Δ) alone are phenotypically normal, but cells carrying both gga2Δ and apl2Δ are defective in growth, α-factor maturation, and transport of carboxypeptidase S to the vacuole. Disruption of both GGA genes and APL2 results in cells so severely compromised in growth that they form only microcolonies. Gga proteins can bind clathrin in vitro and cofractionate with clathrin-coated vesicles. Our results indicate that yeast Gga proteins play an important role in cargo-selective clathrin-mediated protein traffic from the trans-Golgi network to endosomes.
Resumo:
Since concomitant release of structurally related peptide hormones with apparently similar functions seems to be a general concept in endocrinology, we have studied the dynamics of the lifetime of the three known adipokinetic hormones (AKHs) of the migratory locust, which control flight-directed mobilization of carbohydrate and lipid from fat body stores. Although the structure of the first member of the AKHs has been known for 20 years, until now, reliable data on their inactivation and removal from the hemolymph are lacking, because measurement requires AKHs with high specific radioactivity. Employing tritiated AKHs with high specific radioactivity, obtained by catalytic reduction with tritium gas of the dehydroLeu2 analogues of the AKHs synthesized by the solid-phase procedure, studies with physiological doses of as low as 1.0 pmol per locust could be conducted. The AKHs appear to be transported in the hemolymph in their free forms and not associated with a carrier protein, despite their strong hydrophobicity. Application of AKHs in their free form in in vivo and in vitro studies therefore now has been justified. We have studied the degradation of the three AKHs during rest and flight. The first cleavage step by an endopeptidase is crucial, since the resulting degradation products lack any adipokinetic activity. Half-lives for AKH-I, -II and -III were 51, 40, and 5 min, respectively, for rest conditions and 35, 37, and 3 min, respectively, during flight. The rapid and differential degradation of structurally related hormones leads to changes in the ratio in which they are released and therefore will have important consequences for concerted hormone action at the level of the target organ or organs, suggesting that each of the known AKHs may play its own biological role in the overall syndrome of insect flight.
Resumo:
More than 30 years ago, Brambell published the hypothesis bearing his name [Brambell, F. W. R., Hemmings, W. A. & Morris, 1. C. (1964) Nature (London) 203, 1352-1355] that remains as the cornerstone for thinking on IgG catabolism. To explain the long survival of IgG relative to other plasma proteins and its pattern of increased fractional catabolism with high concentrations of IgG, Brambell postulated specific IgG "protection receptors" (FcRp) that would bind IgG in pinocytic vacuoles and redirect its transport to the circulation; when the FcRp was saturated, the excess unbound IgG then would pass to unrestricted lysosomal catabolism. Brambell subsequently postulated the neonatal gut transport receptor (FcRn) and showed its similar saturable character. FcRn was recently cloned but FcRp has not been identified. Using a genetic knockout that disrupts the FcRn and intestinal IgG transport, we show that this lesion also disrupts the IgG protection receptor, supporting the identity of these two receptors. IgG catabolism was 10-fold faster and IgG levels were correspondingly lower in mutant than in wild-type mice, whereas IgA was the same between groups, demonstrating the specific effects on the IgG system. Disruption of the FcRp in the mutant mice was also shown to abrogate the classical pattern of decreased IgG survival with higher IgC concentration. Finally, studies in normal mice with monomeric antigen-antibody complexes showed differential catabolism in which antigen dissociates in the endosome and passes to the lysosome, whereas the associated antibody is returned to circulation; in mutant mice, differential catabolism was lost and the whole complex cleared at the same accelerated rate as albumin, showing the central role of the FcRp to the differential catabolism mechanism. Thus, the same receptor protein that mediates the function of the FcRn transiently in the neonate is shown to have its functionally dominant expression as the FcRp throughout life, resolving a longstanding mystery of the identity of the receptor for the protection of IgG. This result also identifies an important new member of the class of recycling surface receptors and enables the design of protein adaptations to exploit this mechanism to improve survivals of other therapeutic proteins in vivo.