923 resultados para suspended solids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) nanosheets obtained by exfoliating inorganic layered crystals have emerged as a new class of materials with unique attributes. One of the critical challenges is to develop robust and versatile methods for creating new nanostructures from these 2D-nanosheets. Here we report the delamination of layered materials that belonging to two different classes - the cationic clay, montmorillonite, and the anionic clay, hydrotalcite - by intercalation of appropriate ionic surfactants followed by dispersion in a non-polar solvent. The solids are delaminated to single layers of atomic thickness with the ionic surfactants remaining tethered to the inorganic and consequently the nanosheets are electrically neutral. We then show that when dispersions of the two solids are mixed the exfoliated sheets self-assemble as a new layered solid with periodically alternating hydrotalcite and montmorillonite layers. The procedure outlined here is easily extended to other layered solids for creating new superstructures from 2D-nanosheets by self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfer free processes using Cu films greatly simplify the fabrication of reliable suspended graphene devices. In this paper, the authors report on the use of electrodeposited Cu films on Si for transfer free fabrication of suspended graphene devices. The quality of graphene layers on optimized electrodeposited Cu and Cu foil are found to be the same. By selectively etching the underlying Cu, the authors have realized by a transfer free process metal contacted, suspended graphene beams up to 50 mu m in length directly on Si. The suspended graphene beams do not show any increase in defect levels over the as grown state indicating the efficiency of the transfer free process. Measured room temperature electronic mobilities of up to 5200 cm(2)/V.s show that this simpler and CMOS compatible route has the potential to replace the foil based route for such suspended nano and micro electromechanical device arrays. (C) 2014 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new NMR experiment that exploits the advantages of proton double quantum (DQ) NMR through a proton DQ-carbon single quantum (SQ) correlation experiment in the solid state is proposed. Analogous to the previously proposed 2D H-1 (DQ)-C-13 refocused INEPT experiment (Webber et al., 2010), the correlation between H-1 and C-13 is achieved through scalar coupling evolution, while the double quantum coherence among protons is generated through dipolar couplings. However, the new experiment relies on C-13 transverse coherence for scalar transfer. The new experiment dubbed MAS-J-H-1 (DQ)-C-13-HMQC, is particularly suited for unlabeled molecules and can provide higher sensitivity than its INEPT counterpart. The experiment is applied to four different samples. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a ``drag-reduction'' effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 μm and inter-sheet separation of 380 μm. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (≈4 μm) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. © 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High sensitivity gas sensors are typically realized using metal catalysts and nanostructured materials, utilizing non-conventional synthesis and processing techniques, incompatible with on-chip integration of sensor arrays. In this work, we report a new device architecture, suspended core-shell Pt-PtOx nanostructure that is fully CMOS-compatible. The device consists of a metal gate core, embedded within a partially suspended semiconductor shell with source and drain contacts in the anchored region. The reduced work function in suspended region, coupled with builtin electric field of metal-semiconductor junction, enables the modulation of drain current, due to room temperature Redox reactions on exposure to gas. The device architecture is validated using Pt-PtO2 suspended nanostructure for sensing H-2 down to 200 ppb under room temperature. By exploiting catalytic activity of PtO2, in conjunction with its p-type semiconducting behavior, we demonstrate about two orders of magnitude improvement in sensitivity and limit of detection, compared to the sensors reported in recent literature. Pt thin film, deposited on SiO2, is lithographically patterned and converted into suspended Pt-PtO2 sensor, in a single step isotropic SiO2 etching. An optimum design space for the sensor is elucidated with the initial Pt film thickness ranging between 10 nm and 30 nm, for low power (< 5 mu W), room temperature operation. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal chemistry offers several tools to synthesize and manipulate nanoscopic objects. Despite the existence of a plethora of tools to design building blocks, methods for assembling these components into functional macroscopic materials are still in their infancy. This review discusses the recent progress made towards assembling rudimentary nanoscale building blocks into functional macroscopic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O-H center dot center dot center dot N and O-H center dot center dot center dot O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocrystallization experiments of 2-methylresorcinol with several N-bases were performed to identify selective and preferred crystallization routes in relevant structural landscapes. These preferred supramolecular synthon-based crystallization routes were further enhanced by using carefully chosen coformer combinations to synthesize stoichiometric ternary solids. The exercise consists of modular selection and amplification of supramolecular synthons from single through two-to three-component molecular solids, and is equivalent to solid state combinatorial synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthetic strategy is described for the co-crystallization of four-and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the velocity of an effective temperature point (ETP), and by using a two-beam interferometer the proposed concept is corroborated. 1D unsteady heat flow via step-temperature excitation is interpreted as a `micro-scale rectilinear translatory motion' of an ETP. The velocity dependent function is extracted by revisiting the Fourier heat diffusion equation. The relationship between the velocity of the ETP with thermal diffusivity is modeled using a standard solution. Under optimized thermal excitation, the product of the `velocity of the ETP' and the distance is a new constitutive equation for the thermal diffusivity of the solid. The experimental approach involves the establishment of a 1D unsteady heat flow inside the sample through step-temperature excitation. In the moving isothermal surfaces, the ETP is identified using a two-beam interferometer. The arrival-time of the ETP to reach a fixed distance away from heat source is measured, and its velocity is calculated. The velocity of the ETP and a given distance is sufficient to estimate the thermal diffusivity of a solid. The proposed method is experimentally verified for BK7 glass samples and the measured results are found to match closely with the reported value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dislocation theory of fracture criterion for the mixed dislocation emission and cleavage process in an anisotropic solid is developed in this paper. The complicated cases involving mixed-mode loading are considered here. The explicit formula for dislocations interaction with a semi-infinite crack is obtained. The governing equation for the critical condition of crack cleavage in an anisotropic solid after a number dislocation emissions is established. The effects of elastic anisotropy, crack geometry and load phase angle on the critical energy release rate and the total number of the emitted dislocations at the onset of cleavage are analysed in detail. The analyses revealed that the critical energy release rates can increase to one or two magnitudes larger than the surface energy because of the dislocation emission. It is also found elastic anisotropy and crystal orientation have significant effects on the critical energy release rates. The anisotropic values can be several times the isotropic value in one crack orientation. The values may be as much as 40% less than the isotropic value in another crack orientation and another anisotropy parameter. Then the theory is applied to a fee single crystal. An edge dislocation can emit from the crack tip along the most highly shear stressed slip plane. Crack cleavage can occur along the most highly stressed slip plane after a number of dislocation emissions. Calculation is carried out step by step. Each step we should judge by which slip system is the most highly shear stressed slip system and which slip system has the largest energy release rate. The calculation clearly shows that the crack orientation and the load phase angle have significant effects on the crystal brittle-ductile behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using dimensional analysis and finite element calculations we derive several scaling relationships for conical indentation into elastic-perfectly plastic solids. These scaling relationships provide new insights into the shape of indentation curves and form the basis for understanding indentation measurements, including nano- and micro-indentation techniques. They are also helpful as a guide to numerical and finite element calculations of conical indentation problems. Finally, the scaling relationships are used to reveal the general relationships between hardness, contact area, initial unloading slope, and mechanical properties of solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.