921 resultados para surface-enhanced infrared absorption


Relevância:

40.00% 40.00%

Publicador:

Resumo:

[1] During a comprehensive aerosol field campaign, simultaneous measurements were made of aerosol spectral optical depths, black carbon mass concentration (M-b), total (M-t) and size segregated aerosol mass concentrations over an urban continental location, Bangalore (13 degreesN, 77 degreesE, 960 m msl), in India. Large amounts of BC were observed; both in absolute terms and fraction of total mass (similar to11%) and submicron mass (similar to23%) implying a significantly low single scatter albedo. The aerosol visible optical depth (tau(p)) was in the range 0.24 to 0.45. Estimated surface forcing is as high as -23 W m(-2) and top of the atmosphere (TOA) forcing is +5 Wm(-2) during relatively cleaner periods (tau(p) similar to 0.24). The net atmospheric absorption translates to an atmospheric heating of similar to0.8 K day(-1) for cleaner periods and similar to1.5 K day(-1) for less cleaner periods (tau(p) similar to 0.45). Our observations raise several issues, which may have impacts to regional climate and monsoon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [ Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003) ], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10−4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

XPS and LIII X-ray absorption edge studies regarding the valence state of cerium have been carried out on the intermetallic compounds CeCo2, which becomes superconducting at low temperatures. It is observed from XPS that the surface shows both Ce3+ and Ce4+ valence states, while the X-ray absorption edge studies reveal only Ce4+ in the bulk. Thus valence fluctuation and superconductivity do not coexist in the bulk of this compound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rather low scattering or extinction efficiency of small nanoparticles, metallic and otherwise, is significantly enhanced when they are adsorbed on a larger core particle. But the photoabsorption by particles with varying surface area fractions on a larger core particle is found to be limited by saturation. It is found that the core-shell particle can have a lower absorption efficiency than a dielectric core with its surface partially nucleated with absorbing particles-an ``incomplete nanoshell'' particle. We have both numerically and experimentally studied the optical efficiencies of titania (TiO2) nucleated in various degrees on silica (SiO2) nanospheres. We show that optimal surface nucleation over cores of appropriate sizes and optical properties will have a direct impact on the applications exploiting the absorption and scattering properties of such composite particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photoresponse of the graphene photodetector elucidated strong dependence on several optical parameters, such as the angle of incidence and the incident power of infrared exposure at room temperature. The sinusoidal dependence of the photoresponse on incidence angle, which had not been realized before, has now been revealed. The combined effect of the photo excited charge carrier and the photon drag effect explain this nonlinear optical absorption in graphene at lower incident power. The nonlinear dependence of the charge carrier generation on the incident power revealed that this process contributed to the nonlinear photoresponse. However, a deviation is observed at a higher incident power due to the induction of thermal effects in the graphene lattice. This work demonstrates the tunability of the graphene photodetector under a systematic variation that involves both parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present article reports a facile method for preparing the vertically-aligned 1D arrays of a new type of type II n-n TiO2/ZnO core/shell nano-heterostructures by growing the nano-shell of ZnO on the electrochemically fabricated TiO2 nanotubes core for visible light driven photoelectrochemical applications. The strong interfacial interaction at the type II heterojunction leads to an effective interfacial charge separation and charge transport. The presence of various defects such as surface states, interface states and other defects in the nano-heterostructure enable it for improved visible light photoelectrochemical performance. The presence of such defects has also been confirmed by the UV-vis absorption, cathodoluminescence, and crystallographic studies. The TiO2/ZnO core/shell nano-heterostructures exhibit strong green luminescence due to the defect transitions. The TiO2/ZnO core/shell nano-heterostructures photo-electrode show significant enhancement of visible light absorption and it provides a photocurrent density of 0.7 mA cm(-2) at 1 V vs. Ag/AgCl, which is almost 2.7 times that of the TiO2/ZnO core/shell nano-heterostructures under dark conditions. The electrochemical impedance spectroscopy results demonstrate that the substantially improved photoelectrochemical and photo-switching performance of the nano-heterostructures photo-anode is because of the enhancement of interfacial charge transfer and the increase in the charge carrier density caused by the incorporation of the ZnO nano-shell on TiO2 nanotube core.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein, we report a facile and effective method to enhance the photocatalytic activity of bismuth oxybromide (BiOBr) semiconductor through the fabrication of heterojunction with Ag3PO4. The as synthesized Ag3PO4/BiOBr microspheres were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS). The new Ag3PO4/BiOBr heterojunctions exhibited wide absorption in the visible-light region and compared to pure BiOBr and Ag3PO4 samples displayed exceptionally high photocatalytic activity for the degradation of typical organic pollutants such as Rhodamine B (RhB) and phenol. The optimal Ag/Bi weight ratio in Ag3PO4/BiOBr microsphere (AB7) was found to be 0.7. The enhanced photocatalytic activity was related to the efficient separation of electron-hole pairs derived from matching band potentials between BiOBr and Ag3PO4 which results into the generation of natural energy bias at heterojunction and subsequent transfer of photoinduced charge carriers. Moreover, the synthesized samples exhibited almost no loss of activity even after 6 recycling runs indicating their high photocatalytic stability. Considering the facile and environment friendly route for the synthesis of Ag3PO4/BiOBr hybrids with enhanced visible-light induced photocatalytic activity, it is possible to widely apply these hybrids in various fields such as waste water treatment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titania aerogels were synthesized by sol-gel route followed by ambient pressure subcritical drying technique. The aerogels synthesized in the present work possess a maximum surface area of 252 m(2)/g. The pore size distribution is between 2 and 30 nm which confirms their mesoporosity. The oxygen plasma treatment on titania aerogel thin films improved the surface area up to 273 m(2)/g and produced additional hydrophilic groups on the surface. It is confirmed by BET surface area, XPS and thermal analysis in conjunction with dye adsorption studies. After plasma treatment the dye adsorption capacity was increased 2.5 times higher than that of untreated aerogel film. The increased surface area and the hydrophilic groups generated on the titania aerogel surface during plasma treatment are responsible for enhanced dye adsorption. The overall nanoporous morphology of titania aerogel is preserved after plasma treatment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surface of mild steel was modified by generating cetyl-trimethyl ammonium bromide (CTAB) self-assembled monolayer (SAM) to enhance the corrosion resistance property. The experimental parameters (pH and time) for SAM generation were optimized. The modified surface was characterized by infrared reflection absorption spectroscopy (IRRAS) and contact angle measurements. The SAM generated in 1 mM solution of CTAB at pH 2.5 for 2 h showed a regimented monolayer. Polarization and electrochemical impedance spectroscopic (EIS) studies demonstrated a significant enhancement in the corrosion resistance property of the SAM protected steel in both 1 M HCl and 3.5% NaCl solution. The CTAB SAM surface substantially reduced the corrosion rate by approximately 4 times in 1 M HCl and 1.5 times in 3.5% NaCl media as compared to bare steel. Scanning electron microscopy images confirmed the formation of lesser amounts of corrosion products on the SAM protected surface. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear optical properties (NLO) of a graphene oxide-silver (GO-Ag) nanocomposite have been investigated by the Z-scan setup at Q-switched Nd:YAG laser second harmonic radiation i.e., at 532 nm excitation in a nanosecond regime. A noteworthy enhancement in the NLO properties in the GO-Ag nanocomposite has been reported in comparison with those of the synthesized GO nanosheet. The extracted value of third order nonlinear susceptibility (chi(3)), at a peak intensity of I-0 = 0.2 GW cm(-2), for GO-Ag has been found to be 2.8 times larger than that of GO. The enhancement in NLO properties in the GO-Ag nanocomposite may be attributed to the complex energy band structures formed during the synthesis which promote resonant transition to the conduction band via surface plasmon resonance (SPR) at low laser intensities and excited state transition (ESA) to the conduction band of GO at higher intensities. Along with this photogenerated charge carriers in the conduction band of silver or the increase in defect states during the formation of the GO-Ag nanocomposite may contribute to ESA. Open aperture Z-scan measurement indicates reverse saturable absorption (RSA) behavior of the synthesized nanocomposite which is a clear indication of the optical limiting (OL) ability of the nanocomposite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.