925 resultados para streptococcus pneumoniae
Resumo:
The aim of this case-control study of 617 children was to investigate early childhood caries (ECC) risk indicators in a non-fluoridated region in Australia. ECC cases were recruited from childcare facilities, public hospitals and private specialist clinics to source children from different socioeconomic backgrounds. Non-ECC controls were recruited from the same childcare facilities. A multinomial logistic modelling approach was used for statistical analysis. The results showed that a large percentage of children tested positive for Streptococcus mutans if their mothers also tested positive. A common risk indicator found in ECC children from childcare facilities and public hospitals was visible plaque (OR 4.1, 95% CI 1.0-15.9, and OR 8.7, 95% CI 2.3-32.9, respectively). Compared to ECC-free controls, the risk indicators specific to childcare cases were enamel hypoplasia (OR 4.2, 95% CI 1.0-18.3), difficulty in cleaning child's teeth (OR 6.6, 95% CI 2.2-19.8), presence of S. mutans (OR 4.8, 95% CI 0.7-32.6), sweetened drinks (OR 4.0, 95% CI 1.2-13.6) and maternal anxiety (OR 5.1, 95% CI 1.1-25.0). Risk indicators specific to public hospital cases were S. mutans presence in child (OR 7.7, 95% CI 1.3-44.6) or mother (OR 8.1, 95% CI 0.9-72.4), ethnicity (OR 5.6, 95% CI 1.4-22.1), and access of mother to pension or health care card (OR 20.5, 95% CI 3.5-119.9). By contrast, a history of chronic ear infections was found to be protective for ECC in childcare children (OR 0.28, 95% CI 0.09-0.82). The biological, socioeconomic and maternal risk indicators demonstrated in the present study can be employed in models of ECC that can be usefully applied for future longitudinal studies.
Resumo:
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that infects the genital and ocular mucosa of humans, causing infections that can lead to pelvic inflammatory disease, infertility, and blinding trachoma. C. pneumoniae is a respiratory pathogen that is the cause of 12–15% of community-acquired pneumonia. Both chlamydial species were believed to be restricted to the epithelia of the genital, ocular, and respiratory mucosa; however, increasing evidence suggests that both these pathogens can be isolated from peripheral blood of both healthy individuals and patients with inflammatory conditions such as coronary artery disease and asthma. Chlamydia can also be isolated from brain tissues of patients with degenerative neurological disorders such as Alzheimer’s disease and multiple sclerosis, and also from certain lymphomas. An increasing number of in vitro studies suggest that some chlamydial species can infect immune cells, at least at low levels. These infections may alter immune cell function in a way that promotes chlamydial persistence in the host and contributes to the progression of several chronic inflammatory diseases. In this paper, we review the evidence for the growth of Chlamydia in immune cells, particularly monocytes/macrophages and dendritic cells, and describe how infection may affect the function of these cells.
Resumo:
Chlamydia pneumoniae causes a range of respiratory infections including bronchitis, pharyngitis and pneumonia. Infection has also been implicated in exacerbation/initiation of asthma and chronic obstructive pulmonary disease (COPD) and may play a role in atherosclerosis and Alzheimer's disease. We have used a mouse model of Chlamydia respiratory infection to determine the effectiveness of intranasal (IN) and transcutaneous immunization (TCI) to prevent Chlamydia lung infection. Female BALB/c mice were immunized with chlamydial major outer membrane protein (MOMP) mixed with cholera toxin and CpG oligodeoxynucleotide adjuvants by either the IN or TCI routes. Serum and bronchoalveolar lavage (BAL) were collected for antibody analysis. Mononuclear cells from lung-draining lymph nodes were stimulated in vitro with MOMP and cytokine mRNA production determined by real time PCR. Animals were challenged with live Chlamydia and weighed daily following challenge. At day 10 (the peak of infection) animals were sacrificed and the numbers of recoverable Chlamydia in lungs determined by real time PCR. MOMP-specific antibody-secreting cells in lung tissues were also determined at day 10 post-infection. Both IN and TCI protected animals against weight loss compared to non-immunized controls with both immunized groups gaining weight by day 10-post challenge while controls had lost 6% of body weight. Both immunization protocols induced MOMP-specific IgG in serum and BAL while only IN immunization induced MOMP-specific IgA in BAL. Both immunization routes resulted in high numbers of MOMP-specific antibody-secreting cells in lung tissues (IN > TCI). Following in vitro re-stimulation of lung-draining lymph node cells with MOMP; IFNγ mRNA increased 20-fold in cells from IN immunized animals (compared to non-immunized controls) while IFNγ levels increased 6- to 7-fold in TCI animals. Ten days post challenge non-immunized animals had >7000 IFU in their lungs, IN immunized animals <50 IFU and TCI immunized animals <1500 IFU. Thus, both intranasal and transcutaneous immunization protected mice against respiratory challenge with Chlamydia. The best protection was obtained following IN immunization and correlated with IFNγ production by mononuclear cells in lung-draining LN and MOMP-specific IgA in BAL.
Resumo:
This study, investigating 263 women undergoing trans-vaginal oocyte retrieval for in vitro fertilisation (IVF) found that microorganisms colonising follicular fluid contributed to adverse IVF (pre-implantation) and pregnancy (post-implantation) outcomes including poor quality embryos, failed pregnancy and early pregnancy loss (< 37 weeks gestation). Some microorganisms also showed in vitro growth patterns in liquid media that appeared to be enhanced by the hormonal stimulation protocol used for oocyte retrieval. Elaborated cytokines within follicular fluid were also associated with adverse IVF outcomes. This study is imperative because infertility affects 16% of the human population and the numbers of couples needing assistance continues to increase. Despite significant improvements in the technical aspects of assisted reproductive technologies (ART), the live birth rate has not increased proportionally. Overt genital tract infection has been associated with both infertility and adverse pregnancy outcomes (including miscarriage and preterm birth) as a direct result of the infection or the host response to it. Importantly, once inflammation had become established, medical treatment often failed to prevent these significant adverse outcomes. Current evaluations of fertility focus on the ovary as a site of steroid hormone production and ovulation. However, infertility as a result of subclinical colonisation of the ovary has not been reported. Furthermore, identification of the microorganisms present in follicular fluid and the local cytokine profile may provide clinicians with an early indication of the prognosis for IVF treatment in infertile couples, thus allowing antimicrobial treatment and/or counselling about possible IVF failure. During an IVF cycle, multiple oocytes undergo maturation in vivo in response to hormonal hyperstimulation. Oocytes for in vitro insemination are collected trans-vaginally. The follicular fluid that bathes the maturing oocyte in vivo, usually is discarded as part of the IVF procedure, but provides a unique opportunity to investigate microbial causes of adverse IVF outcomes. Some previous studies have identified follicular fluid markers that predict IVF pregnancy outcomes. However, there have not been any detailed microbiological studies of follicular fluid. For this current study, paired follicular fluid and vaginal secretion samples were collected from women undergoing IVF cycles to determine whether microorganisms in follicular fluid were associated with adverse IVF outcomes. Microorganisms in follicular fluid were regarded as either "colonisers" or "contaminants"; colonisers, if they were unique to the follicular fluid sample, and contaminants if the same microorganisms were detected in the vaginal and follicular fluid samples indicating that the follicular fluid was merely contaminated during the oocyte retrieval process. Quite unexpectedly, by these criteria, we found that follicular fluid from approximately 30% of all subjects was colonised with bacteria. Fertile and infertile women with colonised follicular fluid had decreased embryo transfer rates and decreased pregnancy rates compared to women with contaminated follicular fluids. The observation that follicular fluid was not always sterile, but contained a diverse range of microorganisms, is novel. Many of the microorganisms we detected in follicular fluid are known opportunistic pathogens that have been detected in upper genital tract infections and are associated with adverse pregnancy outcomes. Bacteria were able to survive for at least 28 weeks in vitro, in cultures of follicular fluid. Within 10 days of establishing these in vitro cultures, several species (Lactobacillus spp., Bifidobacterium spp., Propionibacterium spp., Streptococcus spp. and Salmonella entericus) had formed biofilms. Biofilms play a major role in microbial pathogenicity and persistence. The propensity of microbial species to form biofilms in follicular fluid suggests that successful treatment of these infections with antimicrobials may be difficult. Bifidobacterium spp. grew, in liquid media, only if concentrations of oestradiol and progesterone were similar to those achieved in vivo during an IVF cycle. In contrast, the growth of Streptococcus agalactiae and Escherichia coli was inhibited or abolished by the addition of these hormones to culture medium. These data suggest that the likelihood of microorganisms colonising follicular fluid and the species of bacteria involved is influenced by the stage of the menstrual cycle and, in the case of IVF, the nature and dose of steroid hormones administered for the maturation of multiple oocytes in vivo. Our findings indicate that the elevated levels of steroid hormones during an IVF cycle may influence the microbial growth within follicular fluid, suggesting that the treatment itself will impact on the microflora present in the female upper genital tract during pre-conception and early post-conception phases of the cycle. The effect of the host immune response on colonising bacteria and on the outcomes of IVF also was investigated. White blood cells reportedly compose between 5% and 15% of the cell population in follicular fluid. The follicular membrane is semi-permeable and cells are actively recruited as part of the normal menstrual cycle and in response to microorganisms. A previous study investigated follicular fluid cytokines from infertile women and fertile oocyte donors undergoing IVF, and concluded that there were no significant differences in the cytokine concentrations between the two groups. However, other studies have reported differences in the follicular fluid cytokine levels associated with infertile women with endometriosis or polycystic ovary syndrome. In this study, elevated levels of interleukin (IL)-1 á, IL-1 â and vascular endothelial growth factor (VEGF) in vaginal fluid were associated with successful fertilisation, which may be useful marker for successful fertilisation outcomes for women trying to conceive naturally or prior to oocyte retrieval for IVF. Elevated levels of IL-6, IL-12p40, granulocyte colony stimulating factor (GCSF) and interferon-gamma (IFN ã) in follicular fluid were associated with successful embryo transfer. Elevated levels of pro-inflammatory IL-18 and decreased levels of anti-inflammatory IL-10 were identified in follicular fluid from women with idiopathic infertility. Successful fertilisation and implantation is dependent on a controlled pro-inflammatory environment, involving active recruitment of pro-inflammatory mediators to the genital tract as part of the menstrual cycle and early pregnancy. However, ongoing pregnancy requires an enhanced anti-inflammatory environment to ensure that the maternal immune system does not reject the semi-allergenic foetus. The pro-inflammatory skew in the follicular fluid of women with idiopathic infertility, correlates with normal rates of fertilisation, embryo discard and embryo transfer, observed for this cohort, which were similar to the outcomes observed for fertile women. However, their pregnancy rate was reduced compared to fertile women. An altered local immune response in follicular fluid may provide a means of explaining infertility in this cohort, previously defined as 'idiopathic'. This study has found that microorganisms colonising follicular fluid may have contributed to adverse IVF and pregnancy outcomes. Follicular fluid bathes the cumulus oocyte complex during the in vivo maturation process, and microorganisms in the fluid, their metabolic products or the local immune response to these microorganisms may result in damage to the oocytes, degradation of the cumulus or contamination of the IVF culture system. Previous studies that have discounted bacterial contamination of follicular fluid as a cause of adverse IVF outcomes failed to distinguish between bacteria that were introduced into the follicular fluid at the time of trans-vaginal oocyte retrieval and those that colonised the follicular fluid. Those bacteria that had colonised the fluid may have had time to form biofilms and to elicit a local immune response. Failure to draw this distinction has previously prevented consideration of bacterial colonisation of follicular fluid as a cause of adverse IVF outcomes. Several observations arising from this study are of significance to IVF programs. Follicular fluid is not always sterile and colonisation of follicular fluid is a cause of adverse IVF and pregnancy outcomes. Hormonal stimulation associated with IVF may influence whether follicular fluid is colonised and enhance the growth of specific species of bacteria within follicular fluid. Bacteria in follicular fluid may form biofilms and literature has reported that this may influence their susceptibility to antibiotics. Monitoring the levels of selected cytokines within vaginal secretions may inform fertilisation outcomes. This study has identified novel factors contributing to adverse IVF outcomes and that are most likely to affect also natural conception outcomes. Early intervention, possibly using antimicrobial or immunological therapies may reduce the need for ART and improve reproductive health outcomes for all women.
Resumo:
Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.
Resumo:
We investigated Ureaplasma urealyticum genital tract colonisation rates in an Australian population to determine whether colonisation was associated with adverse pregnancy outcome. Women attending an antenatal clinic were evaluated for lower genital tract colonisation at their first antenatal visit (162 women) and at 28 weeks gestation (120 women). Placentas from 92 women were cultured. U. urealyticum was the predominant isolate from the lower (57.4%) and upper (17.4%) genital tract in this population of pregnant women. U. urealyticum was a persistent coloniser during mid-trimester of pregnancy (in 88% of women colonised) whereas M. hominis, G. vaginalis, and Group B streptococcus were present as transient flora of the lower genital tract. Lower genital tract colonisation during pregnancy was not directly associated with adverse pregnancy outcome. However preterm delivery in afebrile, asymptomatic women, could possibly be associated with chorioamnionitis (four of 16 preterm births). Screening of women with a history of preterm birth may prevent upper genital tract infections and preterm delivery.
Resumo:
Recently we reported the presence of bacteria within follicular fluid. Previous studies have reported that DNA fragmentation in human spermatozoa after in vivo or in vitro incubation with bacteria results in early embryo demise and a reduced rate of ongoing pregnancy, but the effect of bacteria on oocytes is unknown. This study examined the DNA within mouse oocytes after 12 hours’ incubation within human follicular fluids (n = 5), which were collected from women undergoing in vitro fertilization (IVF) treatment. Each follicular fluid sample was cultured to detect the presence of bacteria. Terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) was used to label DNA fragmentation in ovulated, non-fertilized mouse oocytes following in vitro incubation in human follicular fluid. The bacteria Streptococcus anginosus and Peptoniphilus spp., Lactobacillus gasseri (low-dose), L. gasseri (high-dose), Enterococcus faecalis, or Propionibacterium acnes were detected within the follicular fluids. The most severe DNA fragmentation was observed in oocytes incubated in the follicular fluids containing P. acnes or L. gasseri (high-dose). No DNA fragmentation was observed in the mouse oocytes incubated in the follicular fluid containing low-dose L. gasseri or E. faecalis. Low human oocyte fertilization rates (<29%) were associated with extensive fragmentation in mouse oocytes (80–100%). Bacteria colonizing human follicular fluid in vivo may cause DNA fragmentation in mouse oocytes following 12 h of in vitro incubation. Follicular fluid bacteria may result in poor quality oocytes and/or embryos, leading to poor IVF outcomes.
Resumo:
PURPOSE: The purpose of this study was to compare twice daily tooth-brushing using 0.304 percent fluoride toothpaste alone with: (1) twice daily tooth-brushing plus once daily 10% casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste; and (2) twice daily tooth-brushing plus once daily 0.12% chlorhexidine gel (CHX) for reducing early childhood caries (ECC) and mutans streptococci (MS) colonization. METHODS: Subjects (n=622) recruited at birth were randomized to receive either CPP-ACP or CHX or no product (study control [SC]). All children were examined at 6, 12, and 18 months old in their homes, and at 24 months old in a community dental clinic. RESULTS: At 24 months old, the caries incidence was 1% (2/163) in CPP-ACP, 2% (4/180) in CHX, and 2% (3/188) in SC groups. In children who were previously MS colonized at 12 and 18 months old, 0% (0/11) and 5% (3/63), respectively, of the CPP-ACP group remained MS-positive versus 22% (2/9) and 72% (18/25) in CHX and 16% (4/25) and 50% (7/14) in SC groups (P<.001). CONCLUSIONS: There is insufficient evidence to justify the daily use of casein phosphopeptide-amorphous calcium phosphate or chlorhexidine gel to control early childhood caries.
Resumo:
Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.
Resumo:
Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.
Resumo:
Background Viral respiratory illness triggers asthma exacerbations, but the influence of respiratory illness on the acute severity and recovery of childhood asthma is unknown. Our objective was to evaluate the impact of a concurrent acute respiratory illness (based on a clinical definition and PCR detection of a panel of respiratory viruses, Mycoplasma pneumoniae and Chlamydia pneumoniae) on the severity and resolution of symptoms in children with a nonhospitalized exacerbation of asthma. Methods Subjects were children aged 2 to 15 years presenting to an emergency department for an acute asthma exacerbation and not hospitalized. Acute respiratory illness (ARI) was clinically defined. Nasopharyngeal aspirates (NPA) were examined for respiratory viruses, Chlamydia and Mycoplasma using PCR. The primary outcome was quality of life (QOL) on presentation, day 7 and day 14. Secondary outcomes were acute asthma severity score, asthma diary, and cough diary scores on days 5, 7,10, and 14. Results On multivariate regression, presence of ARI was statistically but not clinically significantly associated with QOL score on presentation (B = 0.36, P = 0.025). By day 7 and 14, there was no difference between groups. Asthma diary score was significantly higher in children with ARI (B = 0.41, P = 0.039) on day 5 but not on presentation or subsequent days. Respiratory viruses were detected in 54% of the 78 NPAs obtained. There was no difference in the any of the asthma outcomes of children grouped by positive or negative NPA. Conclusions The presence of a viral respiratory illness has a modest influence on asthma severity, and does not influence recovery from a nonhospitalized asthma exacerbation.
Resumo:
Background Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii. Results Phylogenetic analysis of the type 3 fimbrial genes (mrkABCD) from 39 strains revealed they clustered into five distinct clades (A-E) ranging from one to twenty-three members. The majority of sequences grouped in clade A, which was represented by the mrk gene cluster from the genome sequenced K. pneumoniae MGH78578. The E. coli and K. pneumoniae mrkABCD gene sequences clustered together in two distinct clades, supporting previous evidence for the occurrence of inter-genera lateral gene transfer. All of the strains examined caused type 3 fimbriae mediated agglutination of tannic acid treated human erythrocytes despite sequence variation in the mrkD-encoding adhesin gene. Type 3 fimbriae deletion mutants were constructed in 13 representative strains and were used to demonstrate a direct role for type 3 fimbriae in biofilm formation. Conclusions The expression of functional type 3 fimbriae is common to many Gram-negative pathogens that cause CAUTI and is strongly associated with biofilm growth. Our data provides additional evidence for the spread of type 3 fimbrial genes by lateral gene transfer. Further work is now required to substantiate the clade structure reported here by examining more strains as well as other bacterial genera that make type 3 fimbriae and cause CAUTI.
Resumo:
Objective Ankylosing spondylitis (AS) is a common, highly heritable immune-mediated arthropathy that occurs in genetically susceptible individuals exposed to an unknown but likely ubiquitous environmental trigger. There is a close relationship between the gut and spondyloarthritis, as exemplified in patients with reactive arthritis, in whom a typically self-limiting arthropathy follows either a gastrointestinal or urogenital infection. Microbial involvement in AS has been suggested; however, no definitive link has been established. The aim of this study was to determine whether the gut in patients with AS carries a distinct microbial signature compared with that in the gut of healthy control subjects. Methods Microbial profiles for terminal ileum biopsy specimens obtained from patients with recent-onset tumor necrosis factor antagonist-naive AS and from healthy control subjects were generated using culture-independent 16S ribosomal RNA gene sequencing and analysis techniques. Results Our results showed that the terminal ileum microbial communities in patients with AS differ significantly (P < 0.001) from those in healthy control subjects, driven by a higher abundance of 5 families of bacteria (Lachnospiraceae [P = 0.001], Ruminococcaceae [P = 0.012], Rikenellaceae [P = 0.004], Porphyromonadaceae [P = 0.001], and Bacteroidaceae [P = 0.001]) and a decrease in the abundance of 2 families of bacteria (Veillonellaceae [P = 0.01] and Prevotellaceae [P = 0.004]). Conclusion We show evidence for a discrete microbial signature in the terminal ileum of patients with AS compared with healthy control subjects. The microbial composition was demonstrated to correlate with disease status, and greater differences were observed between disease groups than within disease groups. These results are consistent with the hypothesis that genes associated with AS act, at least in part, through effects on the gut microbiome.
Resumo:
The aims of this investigation were to enumerate coliforms in fresh mangoes, puree, cheeks, and cheeks-in-puree in order to determine the source of these organisms in the processed products, to determine methods for their control, and to identify coliforms isolated from cheeks-in-puree to determine whether they have any public health significance. Product from four processors was tested on two occasions. The retail packs of cheeks-in-puree having the highest coliform counts were those in which raw puree was added to the cheeks. Coliform counts in these samples ranged between 1.4 × 103 and 5.4 × 104 cfu/g. Pasteurisation reduced the coliform count of raw puree to < 5 cfu/g. Forty-seven percent of the 73 colonies, isolated as coliforms on the basis of their colony morphology on violet red bile agar, were identified as Klebsiella pneumoniae using the ATB 32E Identification System. Klebsiella strains were tested for growth at 10 °C, faecal coliform response, and fermentation of -melizitose, to differentiate the three phenotypically similar strains, K. pneumoniae, K. terrigena and K planticola. Results indicated that 41% of K. pneumoniae isolates gave reactions typical of K. pneumoniae. A further 44% of strains gave an atypical reaction pattern for these tests and were designated ‘psychrotrophic’ K. pneumoniae. Klebsiella pneumoniae counts of between 2.1 × 103 and 4.9 × 104 cfu/g were predicted to occur in the retail packs of mango cheeks-in-puree produced by the processors who constituted this product with raw puree. In view of the opportunistic pathogenic nature of K. pneumoniae, its presence in these products is considered undesirable and steps, such as pasteurisation of puree, should be taken in order to inactivate it