980 resultados para stochastic approximation algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees orthogonality of all the orbitals involved and simplifies the calculation of exchange T-matrix elements. The interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algorithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code with the distorting potential set to zero with equivalent results generated by a more robust code that uses the conventional plane-wave Born approximation. Sample calculation results are presented for ionization of K- and L-shells of various elements and compared with the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Itô vs Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itô. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for both interpretations is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an algorithm to simulate a Gaussian stochastic process that is non-¿-correlated in both space and time coordinates. The colored noise obeys a linear reaction-diffusion Langevin equation with Gaussian white noise. This equation is exactly simulated in a discrete Fourier space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We herein present a preliminary practical algorithm for evaluating complementary and alternative medicine (CAM) for children which relies on basic bioethical principles and considers the influence of CAM on global child healthcare. CAM is currently involved in almost all sectors of pediatric care and frequently represents a challenge to the pediatrician. The aim of this article is to provide a decision-making tool to assist the physician, especially as it remains difficult to keep up-to-date with the latest developments in the field. The reasonable application of our algorithm together with common sense should enable the pediatrician to decide whether pediatric (P)-CAM represents potential harm to the patient, and allow ethically sound counseling. In conclusion, we propose a pragmatic algorithm designed to evaluate P-CAM, briefly explain the underlying rationale and give a concrete clinical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical method for spectroscopic ellipsometry of thick transparent films. When an analytical expression for the dispersion of the refractive index (which contains several unknown coefficients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness. Then the thickness is varied within a range (according to its approximate value). The final result given by our method is as follows: The sample thickness is considered to be the one that gives the best fitting. The refractive index is defined by the coefficients obtained for this thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this paper, we show that the semiclassical Einstein-Langevin equation, introduced in the framework of a stochastic generalization of semiclassical gravity to describe the back reaction of matter stress-energy fluctuations, can be formally derived from a functional method based on the influence functional of Feynman and Vernon. In the second part, we derive a number of results for background solutions of semiclassical gravity consisting of stationary and conformally stationary spacetimes and scalar fields in thermal equilibrium states. For these cases, fluctuation-dissipation relations are derived. We also show that particle creation is related to the vacuum stress-energy fluctuations and that it is enhanced by the presence of stochastic metric fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.