983 resultados para stable isotopic
Resumo:
During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. Here we assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition delta C-13 of methane in Antarctic ice cores from Dronning Maud Land and Vostok. We find that variations in the delta C-13 of methane are not generally correlated with changes in atmospheric methane concentration, but instead more closely correlated to atmospheric CO2 concentrations. We interpret this to reflect a climatic and CO2-related control on the isotopic signature of methane source material, such as ecosystem shifts in the seasonally inundated tropical wetlands that produce methane. In contrast, relatively stable delta C-13 values occurred during intervals of large changes in the atmospheric loading of methane. We suggest that most methane sources-most notably tropical wetlands-must have responded simultaneously to climate changes across these periods.
Resumo:
Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4) variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH) archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites), the Kr isobaric interference (up to ~0.8 ‰, system dependent), inter-laboratory calibration offsets (~0.2 ‰) and uncertainties in past CH4 levels (~0.5 ‰).
Resumo:
In the summers of 2001 and 2002, glacio-climatological research was performed at 4110-4120 m a.s.l. on the Belukha snow/firn plateau, Siberian Altai. Hundreds of samples from snow pits and a 21 m snow/firn core were collected to establish the annual/seasonal/monthly depth-accumulation scale, based on stable-isotope records, stratigraphic analyses and meteorological and synoptic data. The fluctuations of water stable-isotope records show well-preserved seasonal variations. The delta(18)O and delta D relationships in precipitation, snow pits and the snow/firn core have the same slope to the covariance as that of the global meteoric water line. The origins of precipitation nourishing the Belukha plateau were determined based on clustering analysis of delta(18)O and d-excess records and examination of synoptic atmospheric patterns. Calibration and validation of the developed clusters occurred at event and monthly timescales with about 15% uncertainty. Two distinct moisture sources were shown: oceanic sources with d-excess < 12 parts per thousand, and the Aral-Caspian closed drainage basin sources with d-excess > 12 parts per thousand. Two-thirds of the annual accumulation was from oceanic precipitation, of which more than half had isotopic ratios corresponding to moisture evaporated over the Atlantic Ocean. Precipitation from the Arctic/Pacific Ocean had the lowest deuterium excess, contributing one-tenth to annual accumulation.
Resumo:
The determination of stable isotope contents of pore-water from consolidated argillaceous rocks remains a critical issue. In order to understand the processes involved in techniques developed for acquiring stable isotope compositions of pore-water, a comparative study between different methods was based on core samples of the Tournemire argillite. It concerns two water extraction techniques based on vacuum distillation and two pore-water equilibration techniques (radial diffusion in liquid phase and diffusive exchange in vapor phase). The water-content values obtained from vacuum distillation at 50 °C are always the lowest, on average 8% lower than the values obtained by heating at 105 °C and 17% lower than the values obtained by heating at 150 °C. The amounts of pore-water estimated from vacuum distillation at 105 °C and 150 °C and from radial diffusion method are in good agreement with those determined by heating. On the contrary, the vapor exchange method provides the highest values of water contents. Concerning stable isotope data, a good agreement was found between those obtained by equilibration techniques and those of fracture water, especially for 2H. Vacuum distillation at high temperature (particularly at 150 °C) also provided results consistent with data of fracture fluids. On the other hand, distillation at 50 °C provides a systematic depletion in heavy isotopes (about –20‰ for 2H and –2.7‰ for 18O) that can be modelled by an incomplete Rayleigh-type distillation process.
Resumo:
A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ13C,δ18O,δ2H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ13 C 0.15‰,δ18O 0.30‰,δ2H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochem- istry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.
Resumo:
Argillaceous rocks are considered to be a suitable geological barrier for the long-term containment of wastes. Their efficiency at retarding contaminant migration is assessed using reactive-transport experiments and modeling, the latter requiring a sound understanding of pore-water chemistry. The building of a pore-water model, which is mandatory for laboratory experiments mimicking in situ conditions, requires a detailed knowledge of the rock mineralogy and of minerals at equilibrium with present-day pore waters. Using a combination of petrological, mineralogical, and isotopic studies, the present study focused on the reduced Opalinus Clay formation (Fm) of the Benken borehole (30 km north of Zurich) which is intended for nuclear-waste disposal in Switzerland. A diagenetic sequence is proposed, which serves as a basis for determining the minerals stable in the formation and their textural relationships. Early cementation of dominant calcite, rare dolomite, and pyrite formed by bacterial sulfate reduction, was followed by formation of iron-rich calcite, ankerite, siderite, glauconite, (Ba, Sr) sulfates, and traces of sphalerite and galena. The distribution and abundance of siderite depends heavily on the depositional environment (and consequently on the water column). Benken sediment deposition during Aalenian times corresponds to an offshore environment with the early formation of siderite concretions at the water/sediment interface at the fluctuating boundary between the suboxic iron reduction and the sulfate reduction zones. Diagenetic minerals (carbonates except dolomite, sulfates, silicates) remained stable from their formation to the present. Based on these mineralogical and geochemical data, the mineral assemblage previously used for the geochemical model of the pore waters at Mont Terri may be applied to Benken without significant changes. These further investigations demonstrate the need for detailed mineralogical and geochemical study to refine the model of pore-water chemistry in a clay formation.
Resumo:
Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleoatmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotoperatios at Dome C, Antarctica, during the austral summer of 2011/2012. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2–5 cm depth resolution and a 10-day frequency. At the end of the season, acomparable nitrate mass loss was observed in both pits for the top-level samples (0–7 cm) attributed to mixing with the surrounding snow. After excluding samples impacted by the mixing process, we derived an average apparent nitrogen isotopic fractionation (15" app/of role in driving the isotopic fractionation of nitrate in snow.We have estimated a purely photolytic nitrogen isotopic fractionation (15"photo) of -55.8 12.0 ‰ from the difference in the derived apparent isotopic ractionations of the two experimental fields, as both pits were exposed to similar physical processes except exposure to solar UV. This value is in close agreement with the 15" photo value of -47.9 6.8 ‰ derived in a laboratory experiment simulated for Dome C conditions (Berhanu et al., 2014). We have also observed an insensitivity of 15" with depth in the snowpack under the given experimental setup. This is due to the uniform attenuation of incoming solar UV by snow, as 15" is strongly dependent on the spectral distribution of the incoming light flux. Together with earlier work, the results presented here represent a strong body of evidence that solar UV photolysis is the most relevant post-depositional process modifying the stable isotope ratios of snow nitrate at low-accumulation sites, where many deep ice cores are drilled. Nevertheless, modeling the loss of nitrate in snow is still required before a robust interpretation of ice core records can be provided.
Resumo:
Stable isotope analyses of discrete seasonal layers from a 108-yr annually laminated freeze-core from Baldeg-gersee, a small, eutrophic lake in central Switzerland, provide information on the climatological and environmental factors, including lake eutrophication, that control oxygen and carbon isotopic composition of epilimnic biologically induced calcite precipitate. During the last 100 yr, Baldeggersee has undergone major increases in productivity and eutrophication in response to nutrient loading from agriculture and industrialization in the lake's watershed. Calibration of the isotopic signal in Baldeggersee to historical limnological data quantitatively links evidence of isotopic depletion in the sedimented calcite to trophic state of the lake. δ18O values from the spring/summer “light” sediment layers steadily diverged to more depleted values in response to historical eutrophication: measured δ18O values were up to 21.5‰ more negative than calculated equilibrium δ18O values. Evidence for 13C depletion in the calcite, relative to equilibrium values, is more difficult to ascertain because of an overall dominance of isotopic enrichment in the dissolved inorganic pool as productivity in Baldeggersee increases. A positive association exists between the degree of oxygen-18 depletion and the calcite crystal size. Thus, large amorphous calcite grains can be used as a proxy for recognizing apparent isotopic nonequilibrium in sediment sequences from highly productive lacustrine environments from all geologic time scales. In contrast to the light layers, the oxygen isotopic composition of the calcite in the late summer/fall “dark” sediment layers is unaffected by the apparent isotope nonequilibrium. Oxygen and carbon isotope values from the dark laminae in the Baldeggersee sediment therefore provide environmental and climatological proxies that can be calibrated with known environmental and regional climate data for the last century.
Resumo:
Seventeen whole-rock samples, generally taken at 25-50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for 87Sr/86Sr ratios, Sr and Rb concentrations, and 18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330-560 m interval, 5 samples have a restricted range of 0.70255-0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260-330 m interval, approximately intermediate Sr isotopic ratios are found. Delta18O values (?) range from 6.4 to 7.8 in the upper 260 m, 6.2-6.4 in the 270-320 m interval, and 5.8-6.2 in the 320-560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320-560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration. The higher 87Sr/86Sr and 18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater (87Sr/86Sr = 0.7091) increased basalt 87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock delta18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.
Resumo:
Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.
Resumo:
A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral delta18O. At 29°S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral delta18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral delta18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral delta18O demonstrate a high variability in spectral composition through time. Oscillations in the 5-7-y, 14-15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral delta18O suggests a rise in SST by 0.6°C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4°C since AD 1795 is inferred from the coral record.
Resumo:
Monthly delta18O records of 2 coral colonies (Porites cf. lutea and P. cf. nodifera) from different localities (Aqaba and Eilat) from the northern Gulf of Aqaba, Red Sea, were calibrated with recorded sea surface temperatures (SST) between 1988 and 2000. The results show high correlation coefficients between SST and delta18O. Seasonal variations of coral delta18O in both locations could explain 91% of the recorded SST. Different delta18O/SST relations from both colonies and from the same colonies were obtained, indicating that delta18O from coral skeletons were subject to an extension rate effect. Significant delta18O depletions are associated with high extension rates and higher values with low extension rates. The relation between coral skeletal delta18O and extension rate is not linear and can be described by a simple exponential model. An inverse relationship extends over extension rates from 1 to 5 mm/yr, while for more rapidly growing corals and portions of colonies the relation is constant and the extension rate does not appear to have a significant effect. We recommend that delta18O values be obtained from fast-growing corals or from portions in which the isotopic disequilibrium is fairly constant (extension rate >5 mm/yr). The results show that interspecific differences in corals may produce a significant delta18O profile offset between 2 colonies that is independent of environmental and extension-rate effects. We conclude that the rate of skeletal extension and the species of coral involved have an important influence on coral delta18O and must be considered when using delta18O records for paleoclimatic reconstructions.
Resumo:
A high-resolution (~4-5cm/kyr) giant piston core record (MD962085) retrieved during an IMAGES II-NAUSICAA cruise from the continental slope of the southeast Atlantic Ocean reveals striking variations in planktonic foraminifer faunal abundances and sea-surface temperatures (SST) during the past 600 000 yr. The location and high-quality sedimentary record of the core provide a good opportunity to assess the variability of the Benguela Current system and associated important features of the ocean-climate system in the southeast Atlantic. The planktonic foraminifer faunal abundances of the core are dominated by three assemblages: (1) Neogloboquadrina pachyderma (right coiling) + Neogloboquadrina dutertrei, (2) Globigerina bulloides, and (3) Globorotalia inflata. The assemblage of N. pachyderma (right coiling) + N. dutertrei shows distinctive abundance changes which are nearly in-phase with glacial-interglacial variations. The high abundances of this assemblage are associated with major glacial conditions, possibly representing low SST/high nutrient level conditions in the southwestern Africa margin. In contrast, the G. bulloides and G. inflata assemblages show greater high-frequency abundance change patterns, which are not parallel to the glacial-interglacial changes. These patterns may indicate rapid oceanic frontal movements from the south, and a rapid change in the intensity of the Benguela upwelling system from the east. A single episode of maximum abundances of a polar water species N. pachyderma (left coiling) occurred in the beginning of stage 9 (~340-330 kyr). The event of the maximum occurrence of this species shown in this record may indicate instability in the Benguela coastal upwelling, or the Antarctic polar front zone position. A winter season SST estimate using transfer function techniques for this record shows primarily glacial-interglacial variations. The SST is maximal during the transitions from the major glacial to interglacial stages (Terminations I, II, IV, V), and is associated with the abundance maxima of a warm water species indicator Globigerinoides ruber. Cross-spectral analyses of the SST record and the SPECMAP stack reveal statistically significant concentrations of variance and coherencies in three major orbital frequency bands. The SST precedes changes in the global ice volume in all orbital frequency bands, indicating a dominant southern Hemispheric climate effect over the Benguela Current region in the southeast Atlantic.
Resumo:
We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models
Resumo:
This study documents the biological signatures impressed upon the sedimentary record underlying both the 5°N upwelling system of the Somali Current and the equatorial area of the Somali Basin out of the upwelling influence. The evolution of these two distinct hydrographic systems is compared for the last 160 kyr. Correspondence and cluster analyses are performed on combined radiolarian and planktonic foraminiferal quantitative data in order to study the changes of the planktonic assemblages through time and space. The Upwelling Radiolarian Index (URI) is used as a productivity proxy. The water temperature and hydrographic structure of the upper water masses appear to be the major factors controlling the distribution patterns of the fauna. The relative abundances of three groups of foraminifera, cold water form (dextral N. pachyderma), mixed layer dwellers (G. trilobus, G. ruber, G. sacculifer, G. conglobatus, and G. glutinata), and thermocline dwellers (G. menardii, G. tumida, N. dutertrei, G. crassaformis, and P. obliquiloculata), follow distinct evolutionary patterns at the two sites during the last 160 kyr. At the equatorial site (core MD 85668), downcore fluctuations in the relative abundances of the three groups are closely related to the glacial/interglacial cyclicity and provide some insights into the interpretation of hydrographic changes. The dominance of the mixed layer foraminifera at the transition intervals between isotope stages 6/5 and 2/1, combined with weak URI values, is thought to reflect the reorganization of the oceanographic circulation. These short-term events (with a duration of < 5000 year) could be related to the rapid inflow of oxygen-depleted water through the Indonesian straits as a result of sea level rise during deglaciation. Underneath the 5°N gyre (core MD 85674), the response to global climatic changes is overprinted by the regional effect of the Somalian upwelling, which has been persistent over the last 160 kyr.