932 resultados para spectroscopic parameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a near-infrared (0.9-2.4 mu m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (approximate to 10-300 Myr). Our sample is composed of 48 low-resolution (R approximate to 100) spectra and 41 moderate-resolution spectra (R greater than or similar to 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of similar to 10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, Ki, Nai, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental modal analysis techniques are applied to characterize the planar dynamic behavior of two spur planetary gears. Rotational and translational vibrations of the sun gear, carrier, and planet gears are measured. Experimentally obtained natural frequencies, mode shapes, and dynamic response are compared to the results from lumped-parameter and finite element models. Two qualitatively different classes of mode shapes in distinct frequency ranges are observed in the experiments and confirmed by the lumped-parameter model, which considers the accessory shafts and fixtures in the system to capture all of the natural frequencies and modes. The finite element model estimates the high-frequency modes that have significant tooth mesh deflection without considering the shafts and fixtures. The lumped-parameter and finite element models accurately predict the natural frequencies and modal properties established by experimentation. Rotational, translational, and planet mode types presented in published mathematical studies are confirmed experimentally. The number and types of modes in the low-frequency and high-frequency bands depend on the degrees of freedom in the central members and planet gears, respectively. The accuracy of natural frequency prediction is improved when the planet bearings have differing stiffnesses in the tangential and radial directions, consistent with the bearing load direction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibrational excitation of CO2 by a fast-moving O atom followed by infrared emission from the vibrationally excited CO2 has been shown to be an important cooling mechanism in the upper atmospheresof Venus, Earth and Mars. We are trying to determine more precisely the efficiency (rate coefficient) of the CO2-O vibrational energy transfer. For experimental ease the reverse reaction is used, i.e. collision of a vibrationally excited CO2 with atomic O, where we are able to convert to the atmospherically relevant reaction via a known equilibrium constant. The goal of this experiment was to measure the magnitudes of rate coefficients for vibrational energy states above the first excited state, a bending mode in CO2. An isotope of CO2, 13CO2, was used for experimental ease. The rate coefficients for given vibrational energy transfers in 13CO2 are not significantly different from 12CO2 at this level of precision. A slow-flowing gas mixture was flowed through a reaction cell: 13CO2 (vibrational specie of interest), O3(atomic O source), and Ar (bath gas). Transient diode laser absorption spectroscopy was used to monitor thechanging absorption of certain vibrational modes of 13CO2 after a UV pulse from a Nd:YAG laser was fired. Ozone absorbed the UV pulse in a process which vibrationally excited 13CO2 and liberated atomic O.Transient absorption signals were obtained by tuning the diode laser frequency to an appropriate ν3 transition and monitoring the population as a function of time following the Nd:YAG pulse. Transient absorption curves were obtained for various O atom concentrations to determine the rate coefficient of interest. Therotational states of the transitions used for detection were difficult to identify, though their short reequilibration timescale made the identification irrelevant for vibrational energy transfer measurements. The rate coefficient for quenching of the (1000) state was found to be (4 ± 8) x 10-12 cm3 s-1 which is the same order of magnitude as the lowest-energy bend-excited mode: (1.8 ± 0.3) x 10-12 cm3 s-1. More data is necessary before it can be certain that the numerical difference between the two is real.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic core-shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au-Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X-ray powder diffraction, points towards the presence of a core-shell structure with a gold core surrounded by an Au-Hg solid solution layer. The amalgamation process is described by pseudo-zero-order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV-vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core-shell particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient synthetic approach to a symmetrically functionalized tetrathiafulvalene (TTF) derivative with two diamine moieties, 2-[5,6-diamino-4,7-bis(4-pentylphenoxy)-1,3-benzodithiol-2-ylidene]-4,7- bis(4-pentylphenoxy)-1,3-benzodithiole-5,6-diamine (2), is reported. The subsequent Schiff-base reactions of 2 afford large p-conjugated multiple donoracceptor (DA) arrays, for example, the triad 2-[4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxalin-2-ylidene]-4,9 -bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxaline (8) and the corresponding tetrabenz[bc,ef,hi,uv]ovalene-fused pentad 1, in good yields and high purity. The novel redox-active nanographene 1 is so far the largest known TTF-functionalized polycyclic aromatic hydrocarbon (PAH) with a well-resolved 1H NMR spectrum. The electrochemically highly amphoteric pentad 1 and triad 8 exhibit various electronically excited charge-transfer states in different oxidation states, thus leading to intense optical intramolecular charge-transfer (ICT) absorbances over a wide spectral range. The chemical and electrochemical oxidations of 1 result in an unprecedented TTF+ radical cation dimerization, thereby leading to the formation of [1+]2 at room temperature in solution due to the stabilizing effect, which arises from strong pp interactions. Moreover, ICT fluorescence is observed with large solvent-dependent Stokes shifts and quantum efficiencies of 0.05 for 1 and 0.035 for 8 in dichloromethane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2011, the Tumour Node Metastasis (TNM) staging system still remains the gold standard for stratifying colorectal cancer (CRC) patients into prognostic subgroups, and is considered a solid basis for treatment management. Nevertheless, there is still a challenge with regard to therapeutic strategy; stage II patients are not typically selected for postoperative adjuvant chemotherapy, although some stage II patients have a comparable outcome to stage III patients who, themselves do receive such treatment. Consequently, there has been an inundation of 'prognostic biomarker' studies aiming to improve the prognostic stratification power of the TNM staging system. Most proposed biomarkers are not implemented because of lack of reproducibility, validation and standardisation. This problem can be partially resolved by following the REMARK guidelines. In search of novel prognostic factors for patients with CRC, one might glance at a table in the book entitled 'Prognostic Factors in Cancer' published by the International Union against Cancer (UICC) in 2006, in which TNM stage, L and V classifications are considered 'essential' prognostic factors, whereas tumour grade, perineural invasion, tumour budding and tumour-border configuration among others are proposed as 'additional' prognostic factors. Histopathology reports normally include the 'essential' features and are accompanied by tumour grade, histological subtype and information on perineural invasion, but interestingly, the tumour-border configuration (i.e., growth pattern) and especially tumour budding are rarely reported. Although scoring systems such as the 'BRE' in breast and 'Gleason' in prostate cancer are solidly based on histomorphological features and used in daily practice, no such additional scoring system to complement TNM staging is available for CRC. Regardless of differences in study design and methods for tumour-budding assessment, the prognostic power of tumour budding has been confirmed by dozens of study groups worldwide, suggesting that tumour budding may be a valuable candidate for inclusion into a future prognostic scoring system for CRC. This mini-review therefore attempts to present a short and concise overview on tumour budding, including morphological, molecular and prognostic aspects underlining its inter-disciplinary relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative diseases affect the cerebellum of numerous dog breeds. Although subjective, magnetic resonance (MR) imaging has been used to detect cerebellar atrophy in these diseases, but there are few data available on the normal size range of the cerebellum relative to other brain regions. The purpose of this study was to determine whether the size of the cerebellum maintains a consistent ratio with other brain regions in different ages and breeds of normal dogs and to define a measurement that can be used to identify cerebellar atrophy on MR images. Images from 52 normal and 13 dogs with cerebellar degenerative diseases were obtained. Volume and mid-sagittal cross-sectional area of the forebrain, brainstem, and cerebellum were calculated for each normal dog and compared between different breeds and ages as absolute and relative values. The ratio of the cerebellum to total brain and of the brainstem to cerebellum mid-sagittal cross-sectional area was compared between normal and affected dogs and the sensitivity and specificity of these ratios at distinguishing normal from affected dogs was calculated. The percentage of the brain occupied by the cerebellum in diverse dog breeds between 1 and 5 years of age was not significantly different, and cerebellar size did not change with increasing age. Using a cut off of 89%, the ratio between the brainstem and cerebellum mid-sagittal cross-sectional area could be used successfully to differentiate affected from unaffected dogs with a sensitivity and specificity of 100%, making this ratio an effective tool for identifying cerebellar atrophy on MR images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clay minerals have a fundamental importance in many processes in soils and sediments such as the bioavailability of nutrients, water retention, the adsorption of common pollutants, and the formation of an impermeable barrier upon swelling. Many of the properties of clay minerals are due to the unique environment present at the clay mineral/water interface. Traditional techniques such as X-ray diffraction (XRD) and absorption isotherms have provided a wealth of information about this interface but have suffered from limitations. The methods and results presented herein are designed to yield new experimental information about the clay mineral/water interface.A new method of studying the swelling dynamics of clay minerals was developed using in situ atomic force microscopy (AFM). The preliminary results presented here demonstrate that this technique allows one to study individual clay mineral unit layers, explore the natural heterogeneities of samples, and monitor swelling dynamics of clay minerals in real time. Cation exchange experiments were conducted monitoring the swelling change of individual nontronite quasi-crystals as the chemical composition of the surrounding environment was manipulated several times. A proof of concept study has shown that the changes in swelling are from the exchange of interlayer cations and not from the mechanical force of replacing the solution in the fluid cell. A series of attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR) experiments were performed to gain a better understanding of the organization of water within the interlayer region of two Fe-bearing clay minerals. These experiments made use of the Subtractive Kramers-Kronig (SKK) Transform and the calculation of difference spectra to obtain information about interfacial water hidden within the absorption bands of bulk water. The results indicate that the reduction of structural iron disrupts the organization of water around a strongly hydrated cation such as sodium as the cation transitions from an outer-sphere complex with the mineral surface to an inner-sphere complex. In the case of a less strongly hydrated cation such as potassium, reduction of structural iron actually increases the ordering of water molecules at the mineral surface. These effects were only noticed with the reduction of iron in the tetrahedral sheet close to the basal surface where the increased charge density is localized closer to the cations in the interlayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.