787 resultados para social communication networks
Resumo:
The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.
Resumo:
My doctoral dissertation in sociology and Russian studies, Social Networks and Everyday Practices in Russia, employs a "micro" or "grassroots" perspective on the transition. The study is a collection of articles detailing social networks in five different contexts. The first article examines Russian birthdays from a network perspective. The second takes a look at health care to see whether networks have become obsolete in a sector that is still overwhelmingly public, but increasingly being monetarised. The third article investigates neighbourhood relations. The fourth details relationships at work, particularly from the vantage point of internal migration. The fifth explores housing and the role of networks and money both in the Soviet and post-Soviet era. The study is based on qualitative social network and interview data gathered among three groups, teachers, doctors and factory workers, in St. Petersburg during 1993-2000. Methodologically it builds on a qualitative social network approach. The study adds a critical element to the discussion on networks in post-socialism. A considerable consensus exists that social networks were vital in state socialist societies and were used to bypass various difficulties caused by endemic shortages and bureaucratic rigidities, but a more debated issue has been their role in post-socialism. Some scholars have argued that the importance of networks has been dramatically reduced in the new market economy, whereas others have stressed their continuing importance. If a common denominator in both has been a focus on networks in relation to the past, a more overlooked aspect has been the question of inequality. To what extent is access to networks unequally distributed? What are the limits and consequences of networks, for those who have access, those outside networks or society at large? My study provides some evidence about inequalities. It shows that some groups are privileged over others, for instance, middle-class people in informal access to health care. Moreover, analysing the formation of networks sheds additional light on inequalities, as it highlights the importance of migration as a mechanism of inequality, for example. The five articles focus on how networks are actually used in everyday life. The article on health care, for instance, shows that personal connections are still important and popular in post-Soviet Russia, despite the growing importance of money and the emergence of "fee for service" medicine. Fifteen of twenty teachers were involved in informal medical exchange during a two-week study period, so that they used their networks to bypass the formal market mechanisms or official procedures. Medicines were obtained through personal connections because some were unavailable at local pharmacies or because these connections could provide medicines for a cheaper price or even for free. The article on neighbours shows that "mutual help" was the central feature of neighbouring, so that the exchange of goods, services and information covered almost half the contacts with neighbours reported. Neighbours did not provide merely small-scale help but were often exchange partners because they possessed important professional qualities, had access to workplace resources, or knew somebody useful. The article on the Russian work collective details workplace-related relationships in a tractor factory and shows that interaction with and assistance from one's co-workers remains important. The most interesting finding was that co-workers were even more important to those who had migrated to the city than to those who were born there, which is explained by the specifics of Soviet migration. As a result, the workplace heavily influenced or absorbed contexts for the worker migrants to establish relationships whereas many meeting-places commonly available in Western countries were largely absent or at least did not function as trusted public meeting places to initiate relationships. More results are to be found from my dissertation: Anna-Maria Salmi: Social Networks and Everyday Practices in Russia, Kikimora Publications, 2006, see www.kikimora-publications.com.
Resumo:
In the markets-as-networks approach business networks are conceived as dynamic actor structures, giving focus to exchange relationships and actors’ capabilities to control and co-ordinate activities and resources. Researchers have shared an understanding that actors’ actions are crucial for the development of business networks and for network dynamics. However, researchers have mainly studied firms as business actors and excluded individuals, although both firms and individuals can be seen as business actors. This focus on firms as business actors has resulted in a paucity of research on human action and the exchange of intangible resources in business networks, e.g. social exchange between individuals in social networks. Consequently, the current conception of business networks fails to appreciate the richness of business actors, the human character of business action and the import of social action in business networks. The central assumption in this study is that business actors are multidimensional and that their specific constitution in any given situation is determined by human interaction in social networks. Multidimensionality is presented as a concept for exploring how business actors act in different situations and how actors simultaneously manage multiple identities: individual, organisational, professional, business and network identities. The study presents a model that describes the multidimensionality of actors in business networks and conceptualises the connection between social exchange and human action in business networks. Empirically the study explores the change that has taken place in pharmaceutical retailing in Finland during recent years. The phenomenon of emerging pharmacy networks is highly contemporary in the Nordic countries, where the traditional license-based pharmacy business is changing. The study analyses the development of two Finnish pharmacy chains, one integrated and one voluntary chain, and the network structures and dynamics in them. Social Network Analysis is applied to explore the social structures within the pharmacy networks. The study shows that emerging pharmacy networks are multifaceted phenomena where political, economic, social, cultural, and historical elements together contribute to the observed changes. Individuals have always been strongly present in the pharmacy business and the development of pharmacy networks provides an interesting example of human actors’ influence in the development of business networks. The dynamics or forces driving the network development can be linked to actors’ own economic and social motives for developing the business. The study highlights the central role of individuals and social networks in the development of the two studied pharmacy networks. The relation between individuals and social networks is reciprocal. The social context of every individual enables multidimensional business actors. The mix of various identities, both individual and collective identities, is an important part of network dynamics. Social networks in pharmacy networks create a platform for exchange and social action, and social networks enable and support business network development.
Resumo:
The title of the 14th International Conference on Electronic Publishing (ELPUB), “Publishing in the networked world: Transforming the nature of communication”, is a timely one. Scholarly communication and scientific publishing has recently been undergoing subtle changes. Published papers are no longer fixed physical objects, as they once were. The “convergence” of information, communication, publishing and web technologies along with the emergence of Web 2.0 and social networks has completely transformed scholarly communication and scientific papers turned to living and changing entities in the online world. The themes (electronic publishing and social networks; scholarly publishing models; and technological convergence) selected for the conference are meant to address the issues involved in this transformation process. We are pleased to present the proceedings book with more than 30 papers and short communications addressing these issues. What you hold in your hands is a by-product and the culmination of almost a Year long work of many people including conference organizers, authors, reviewers, editors and print and online publishers. The ELPUB 2010 conference was organized and hosted by the Hanken School of Economics in Helsinki, Finland. Professors Turid Hedlund of Hanken School of Economics and Yaşar Tonta of Hacettepe University Department of Information Management (Ankara, Turkey) served as General Chair and Program Chair, respectively. We received more than 50 submissions from several countries. All submissions were peer-reviewed by members of an international Program Committee whose contributions proved most valuable and appreciated. The 14th ELPUB conference carries on the tradition of previous conferences held in the United Kingdom (1997 and 2001), Hungary (1998), Sweden (1999), Russia (2000), the Czech Republic (2002), Portugal (2003), Brazil (2004), Belgium (2005), Bulgaria (2006), Austria (2007), Canada (2008) and Italy (2009). The ELPUB Digital Library, http://elpub.scix.net serves as archive for the papers presented at the ELPUB conferences through the years. The 15th ELPUB conference will be organized by the Department of Information Management of Hacettepe University and will take place in Ankara, Turkey, from 14-16 June 2011. (Details can be found at the ELPUB web site as the conference date nears by.) We thank Marcus Sandberg and Hannu Sääskilahti for copyediting, Library Director Tua Hindersson – Söderholm for accepting to publish the online as well as the print version of the proceedings. Thanks also to Patrik Welling for maintaining the conference web site and Tanja Dahlgren for administrative support. We warmly acknowledge the support in organizing the conference to colleagues at Hanken School of Economics and our sponsors.
Resumo:
The world of mapping has changed. Earlier, only professional experts were responsible for map production, but today ordinary people without any training or experience can become map-makers. The number of online mapping sites, and the number of volunteer mappers has increased significantly. The development of the technology, such as satellite navigation systems, Web 2.0, broadband Internet connections, and smartphones, have had one of the key roles in enabling the rise of volunteered geographic information (VGI). As opening governmental data to public is a current topic in many countries, the opening of high quality geographical data has a central role in this study. The aim of this study is to investigate how is the quality of spatial data produced by volunteers by comparing it with the map data produced by public authorities, to follow what occurs when spatial data are opened for users, and to get acquainted with the user profile of these volunteer mappers. A central part of this study is OpenStreetMap project (OSM), which aim is to create a map of the entire world by volunteers. Anyone can become an OpenStreetMap contributor, and the data created by the volunteers are free to use for anyone without restricting copyrights or license charges. In this study OpenStreetMap is investigated from two viewpoints. In the first part of the study, the aim was to investigate the quality of volunteered geographic information. A pilot project was implemented by following what occurs when a high-resolution aerial imagery is released freely to the OpenStreetMap contributors. The quality of VGI was investigated by comparing the OSM datasets with the map data of The National Land Survey of Finland (NLS). The quality of OpenStreetMap data was investigated by inspecting the positional accuracy and the completeness of the road datasets, as well as the differences in the attribute datasets between the studied datasets. Also the OSM community was under analysis and the development of the map data of OpenStreetMap was investigated by visual analysis. The aim of the second part of the study was to analyse the user profile of OpenStreetMap contributors, and to investigate how the contributors act when collecting data and editing OpenStreetMap. The aim was also to investigate what motivates users to map and how is the quality of volunteered geographic information envisaged. The second part of the study was implemented by conducting a web inquiry to the OpenStreetMap contributors. The results of the study show that the quality of OpenStreetMap data compared with the data of National Land Survey of Finland can be defined as good. OpenStreetMap differs from the map of National Land Survey especially because of the amount of uncertainty, for example because of the completeness and uniformity of the map are not known. The results of the study reveal that opening spatial data increased notably the amount of the data in the study area, and both the positional accuracy and completeness improved significantly. The study confirms the earlier arguments that only few contributors have created the majority of the data in OpenStreetMap. The inquiry made for the OpenStreetMap users revealed that the data are most often collected by foot or by bicycle using GPS device, or by editing the map with the help of aerial imageries. According to the responses, the users take part to the OpenStreetMap project because they want to make maps better, and want to produce maps, which have information that is up-to-date and cannot be found from any other maps. Almost all of the users exploit the maps by themselves, most popular methods being downloading the map into a navigator or into a mobile device. The users regard the quality of OpenStreetMap as good, especially because of the up-to-dateness and the accuracy of the map.
Resumo:
Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.
Resumo:
In this paper, we consider the problem of selecting, for any given positive integer k, the top-k nodes in a social network, based on a certain measure appropriate for the social network. This problem is relevant in many settings such as analysis of co-authorship networks, diffusion of information, viral marketing, etc. However, in most situations, this problem turns out to be NP-hard. The existing approaches for solving this problem are based on approximation algorithms and assume that the objective function is sub-modular. In this paper, we propose a novel and intuitive algorithm based on the Shapley value, for efficiently computing an approximate solution to this problem. Our proposed algorithm does not use the sub-modularity of the underlying objective function and hence it is a general approach. We demonstrate the efficacy of the algorithm using a co-authorship data set from e-print arXiv (www.arxiv.org), having 8361 authors.
Resumo:
We consider a dense ad hoc wireless network comprising n nodes confined to a given two dimensional region of fixed area. For the Gupta-Kumar random traffic model and a realistic interference and path loss model (i.e., the channel power gains are bounded above, and are bounded below by a strictly positive number), we study the scaling of the aggregate end-to-end throughput with respect to the network average power constraint, P macr, and the number of nodes, n. The network power constraint P macr is related to the per node power constraint, P macr, as P macr = np. For large P, we show that the throughput saturates as Theta(log(P macr)), irrespective of the number of nodes in the network. For moderate P, which can accommodate spatial reuse to improve end-to-end throughput, we observe that the amount of spatial reuse feasible in the network is limited by the diameter of the network. In fact, we observe that the end-to-end path loss in the network and the amount of spatial reuse feasible in the network are inversely proportional. This puts a restriction on the gains achievable using the cooperative communication techniques studied in and, as these rely on direct long distance communication over the network.
Resumo:
Information diffusion and influence maximization are important and extensively studied problems in social networks. Various models and algorithms have been proposed in the literature in the context of the influence maximization problem. A crucial assumption in all these studies is that the influence probabilities are known to the social planner. This assumption is unrealistic since the influence probabilities are usually private information of the individual agents and strategic agents may not reveal them truthfully. Moreover, the influence probabilities could vary significantly with the type of the information flowing in the network and the time at which the information is propagating in the network. In this paper, we use a mechanism design approach to elicit influence probabilities truthfully from the agents. Our main contribution is to design a scoring rule based mechanism in the context of the influencer-influencee model. In particular, we show the incentive compatibility of the mechanisms and propose a reverse weighted scoring rule based mechanism as an appropriate mechanism to use.
Resumo:
We investigate the problem of influence limitation in the presence of competing campaigns in a social network. Given a negative campaign which starts propagating from a specified source and a positive/counter campaign that is initiated, after a certain time delay, to limit the the influence or spread of misinformation by the negative campaign, we are interested in finding the top k influential nodes at which the positive campaign may be triggered. This problem has numerous applications in situations such as limiting the propagation of rumor, arresting the spread of virus through inoculation, initiating a counter-campaign against malicious propaganda, etc. The influence function for the generic influence limitation problem is non-submodular. Restricted versions of the influence limitation problem, reported in the literature, assume submodularity of the influence function and do not capture the problem in a realistic setting. In this paper, we propose a novel computational approach for the influence limitation problem based on Shapley value, a solution concept in cooperative game theory. Our approach works equally effectively for both submodular and non-submodular influence functions. Experiments on standard real world social network datasets reveal that the proposed approach outperforms existing heuristics in the literature. As a non-trivial extension, we also address the problem of influence limitation in the presence of multiple competing campaigns.
Resumo:
We provide new analytical results concerning the spread of information or influence under the linear threshold social network model introduced by Kempe et al. in, in the information dissemination context. The seeder starts by providing the message to a set of initial nodes and is interested in maximizing the number of nodes that will receive the message ultimately. A node's decision to forward the message depends on the set of nodes from which it has received the message. Under the linear threshold model, the decision to forward the information depends on the comparison of the total influence of the nodes from which a node has received the packet with its own threshold of influence. We derive analytical expressions for the expected number of nodes that receive the message ultimately, as a function of the initial set of nodes, for a generic network. We show that the problem can be recast in the framework of Markov chains. We then use the analytical expression to gain insights into information dissemination in some simple network topologies such as the star, ring, mesh and on acyclic graphs. We also derive the optimal initial set in the above networks, and also hint at general heuristics for picking a good initial set.
Resumo:
In social choice theory, preference aggregation refers to computing an aggregate preference over a set of alternatives given individual preferences of all the agents. In real-world scenarios, it may not be feasible to gather preferences from all the agents. Moreover, determining the aggregate preference is computationally intensive. In this paper, we show that the aggregate preference of the agents in a social network can be computed efficiently and with sufficient accuracy using preferences elicited from a small subset of critical nodes in the network. Our methodology uses a model developed based on real-world data obtained using a survey on human subjects, and exploits network structure and homophily of relationships. Our approach guarantees good performance for aggregation rules that satisfy a property which we call expected weak insensitivity. We demonstrate empirically that many practically relevant aggregation rules satisfy this property. We also show that two natural objective functions in this context satisfy certain properties, which makes our methodology attractive for scalable preference aggregation over large scale social networks. We conclude that our approach is superior to random polling while aggregating preferences related to individualistic metrics, whereas random polling is acceptable in the case of social metrics.