919 resultados para skin secretion
Resumo:
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.
Resumo:
We show that the expression of a Yersinia enterocolitica O:8 pYV-encoded type III secretion system was altered in a rough mutant (YeO8-R) due to elevated levels of FlhDC. H-NS might underlie flhDC upregulation in YeO8-R, and the data suggest a relationship between the absence of O antigen and the expression of H-NS.
Resumo:
1. Decreasing the prevalence of pressure ulcers in a chronic care hospital presents a challenge to care providers. 2. The promotion of staff nurses as educational resources has a positive effect on their participation in a wound and skin care team. 3. When basic prevention practices are not in place, risk factors are less useful indicators to predict the development of pressure ulcers. 4. Educating nurses about pressure ulcer etiology, prevention strategies, and treatments has a positive impact on reducing the number of patients who develop pressure ulcers and the number of pressure ulcers that develop on patients in a chronic care hospital.
Resumo:
The aim of this study was to gain further insight into the role that central dopaminergic pathways play in GH neuroregulation in man. Our experimental hypothesis was based on the possibility that most of the controversies on DA role could be due to the fact that the hypothalamic somatotroph rhythm (HSR) was not taken into account when interpreting the GH responses after pharmacological manipulations on dopaminergic pathways. In 10 normal subjects we monitored the effect of central dopaminergic blockade, achieved with metoclopramide (MCP; 10 mg, i.v. Bolus), on the pattern of spontaneous GH secretion and the GH responses to a GHRH challenge (GRF , 1 µg/kg, i.v. bolus) administered together with MCP or 60 min after this drug was given. The study of HSR was made according to our previous postulate. Our results indicate that MCP administration, either prior to or together with the GHRH bolus, significantly increased GHRH-induced GH release during a refractory HSR phase; but not when the GHRH challenge took place during a spotaneous secretory phase. The strong relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks was lost when MCP was given. These data indicate that MCP was able to disrupt the intrinsic HSR by inhibiting the hypothalamic release of somatostain (SS). While a main conclusion would be that central DA is a secretagogue for SS secretion, our results also suggest that this role could be dependent on its effects on the adrenergic inputs to SS neurons.
Resumo:
Sex steroids contribute to modulate GH secretion in man. However, both the exact locus and mechanism by which their actions are exerted still remain not clearly understood. We undertook a number of studies designed to ascertain: (1) whether or not sudden or chronic changes in circulating gonadal steroids may affect GH secretion in normal adults; and (2) the reason(s) for gender-related dimorphic pattern of GH release. The pituitary reserve of GH, as evaluated by means of a GHRH challenge, was similar in women with anorexia nervosa and in normally menstruating women. Estrogenic receptor blockade with tamoxifen (TMX) did not significantly change GHRH-induced GH response in these normal women. Therefore, acute or chronic hypoestrogenism apparently had no important effects at level of somatotrophs. In another group of normal women we tested the possibility that changes in circulating estrogens might induce changes in the hypothalamic-somatotroph rhythm (HSR). GHRH challenges were performed throughout a menstrual cycle, and again after having achieved functional ovarian blockade with a GnRH agonist treatment. Short-term ovarian blockade did not significantly affect the parameters of GH response to GHRH, although it was accompanied by an increase in the number of women ina refractory HSR phase at testing. This suggested a low potentiating effect on the basic pattern of somatostatin (SS) release occurring as a consequence of the decrease in circulating estrogens. In normal men, neither the GH response to GHRH nor the HSR were affected by functional testicular blockade (after GnRH agonist treatment). However, the administration of testosterone enanthate (250 mg) to another group of men increased both the GHRH-induced GH release and the number of subjects in a spontaneous secretory HSR phase at testing; these were reversed by estrogenic receptor blockade with TMS. In another group of normal men, the fraction of GH secreted in pulses (FGHP) during a nocturnal sampling period was significantly decreased by testicular blockade. Other parameters of GH secretion, such as the number of GH pulses and their mean amplitude (A), and the mean plasma GH concentration (MCGH), showed a slight, although not significant, decrease following the lack of androgens. The administration of testosterone enanthate (500 mg) reversed these parameters to values similar to those in the basal study. Interestingly, when tamoxifen was given after testosterone enanthate, A, MCGH and FGHP increased to values significantly higher than in any other experimental condition in that study. In all, these data suggest that 17ß-estradiol may participate in GH modulation by inhibiting the hypothalamic release of somatostatin, while testosterone stimulates it. The results obtained after estrogenic receptor blockade appear to indicate that the effect of testosterone in such a modulation is dependent on its aromatization to 17ß-estradiol. The differential levels of this steroid in both sexes might account for the sexual dimorphic pattern of GH secretion. From other data in the literature, obtained in rats, and our preliminary data in children with constitutional delay of growth and puberty, it is tempting to speculate that the effect of 17ß-estradiol may be exerted by modifying the functional activity of a-2 adrenergic pathways involved in the negative modulation of SS release.
Resumo:
Results of recent studies have indicated that bone marrow cells can differentiate into various cells of ectodermal, mesodermal, and endodermal origins when transplanted into the body. However, the problems associated with those experiments such as the long latent period, rareness of the event, and difficulty in controlling the processes have hampered detailed mechanistic studies. In the present study, we examined the potency of mouse bone marrow cells to differentiate into cells comprising skin tissues using a skin reconstitution assay. Bone marrow cells from adult green fluorescent protein (GFP)-transgenic mice were transplanted in a mixture of embryonic mouse skin cells (17.5 days post-coitus) onto skin defects made on the backs of nude mice. Within 3 weeks, fully differentiated skin with hair was reconstituted. GFP-positive cells were found in the epidermis, hair follicles, sebaceous glands, and dermis. The localization and morphology of the cells, results of immunohistochemistry, and results of specific staining confirmed that the bone marrow cells had differentiated into epidermal keratinocytes, sebaceous gland cells, follicular epithelial cells, dendritic cells, and endothelial cells under the present conditions. These results indicate that this system is suitable for molecular and cellular mechanistic studies on differentiation of stem cells to various epidermal and dermal cells.