948 resultados para simultaneous saccharification fermentation
Resumo:
Many microorganisms that decompose lignocellulosic material are being studied as producers of enzymes to perform enzymatic hydrolysis of the lignocellulosic material present in residues from the agroindustries. Although the cellulose and hemicellulose present in these materials have their value for feeding cattle, their bioavailability requires breakdown of the bonds with indigestible lignin. Predigestion of such materials with ligninases, xylanases and pectinases (cellulase free) may transform the lignocellulosic substrate into a feed with greater digestibility and higher quality for ruminants.. This review provides an overview of variables to be considered in the utilization of fungal plantdepolymerizing enzymes produced by solid-state fermentation from agricultural production residues in Brazil. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
Two catalyst wastes (RNi and RAI) from polyol production were considered as hazardous, due to their respective high concentration of nickel and aluminum contents. This article presents the study, done to avoid environmental impacts, of the simultaneous solidification/stabilization of both catalyst wastes with type II Portland cement (CP) by non-conventional differential thermal analysis (NCDTA). This technique allows one to monitor the initial stages of cement hydration to evaluate the accelerating and/or retarding effects on the process due to the presence of the wastes and to identify the steps where the changes occur. Pastes with water/cement ratio equal to 0.5 were prepared, into which different amounts of each waste were added. NCDTA has the same basic principle of Differential Thermal Analysis (DTA), but differs in the fact that there is no external heating or cooling system as in the case of DTA. The thermal effects of the cement paste hydration with and without waste presence were evaluated from the energy released during the process in real time by acquiring the temperature data of the sample and reference using thermistors with 0.03 A degrees C resolution, coupled to an analog-digital interface. In the early stages of cement hydration retarding and accelerating effects occur, respectively due to RNi and RAl presence, with significant thermal effects. During the simultaneous use of the two waste catalysts for their stabilization process by solidification in cement, there is a synergic resulting effect, which allows better hydration operating conditions than when each waste is solidified separately. Thermogravimetric (TG) and derivative thermogravimetric analysis (DTG) of 4 and 24 h pastes allow a quantitative information about the main cement hydrated phases and confirm the same accelerating or retarding effects due to the presence of wastes indicated from respective NCDTA curves.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different kinds of modifiers and coatings on the integrated platform of transversely heated graphite atomizer (THGA) have been tested for the simultaneous determination of two group of elements: the first, the more volatile, formed by arsenic, bismuth, lead, antimony and selenium; the second, the less volatile, formed by cobalt, chromium, cupper, iron and manganese in milk by electrothermal atomic absorption spectrometry. Different Rh-modifiers were studied, such as Rh-coated platforms (Rh), carbide plus rhodium coated platforms (W-Rh, Zr-Rh), carbide-coated platforms (W and Zr) with co-injection of RhCl3, solutions and uncoated platforms with injection of solutions of Pd(NO3)(2), Mg(NO3)(2), and RhCl3. Milk samples were diluted 1:10 in 1.0% HNO3 and injected into the tube. The mass of modifier deposited and co-injected in the tube and the use of end capped tubes were also evaluated in order to improve the electrothermal behavior of analytes. Integrated platform pretreated with W plus co-injection RhCl3 for first group and pretreated with W-Rh for second group were elected. For 20 mu L injected samples the analytical curves in the 5.0-20.0 mu g L-1 concentration range have good linear correlation coefficients (r > 0.998). Relative standard deviations (n = 12) are < 6% and the calculated characteristic masses are between 5 pg and 62 pg.
Resumo:
The response surface methodology as a tool for assessing the production of alginate and polyhydroxybutirate by Azotobacter vinelandii. Alginate is a polysaccharide extracted from cell walls of brown algae and used in the food, pharmaceuticals and biotech industries. Production is concentrated on the cultivation of brown seaweed, but several bacteria of the genus Pseudomonas and Azotobacter produce alginate. The chemical structure of alginates produced by algae is similar to those synthesized by A. vinelandii. The bacteria also produce intracellular polymers such as polyhydroxybutyrate (PHB), known as bioplastic. This work studied the simultaneous alginate and PHB production by A. vinelandii using sucrose and different parameters of fermentation in an orbital shaker. The optimal values for the production of these compounds were determined by the MSR. The first experiment was a 2(6-2) factorial design. The second was based on significant variables of the first, resulting in a full 3(3-0) factorial design. From the first to the second, an increase was observed in the PHB productivity from 12 to 45 mg g(-1) cell h(-1) and alginate from 100 to 1,600 mg g(-1) of cell h(-1). The productivity of both compounds was in the maximum incubation temperature of 62 degrees C, in the shortest time of incubation (18h) and the sucrose concentration, 11 g L(-1). In both experiments the PHB extracted presented purity of 94%.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)2 + Mg(NO3)2 as the chemical modifier. With 5 μg Pd + 3 μg Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400°C and 2100°C, respectively, and 20 μL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 -50.0 μg L-1 for As, Sb, Se; 10.0 - 100 μg L-1 for Cu; and 20.0 - 200 μg L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 μg L-1 As, 0.2 μg L-1 Cu, 0.6 μg L-1 Mn, 0.3 μg L-1 Sb, 0.9 μg L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 μg L-1, 1000 μg L-1, 2000 μg L-1, 5 μg L-1, and 50 μg L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mn, Sb, and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.
Resumo:
The aim of this paper was to apply a multiresidue method using Supercritical Fluid Extraction (SFE) and capillary gas chromatography with electron capture and mass spectrometry detections in the analysis of the levels of pesticide residues in fruits and vegetables. Single laboratory validation of both solid-liquid and supercritical fluid extraction methods was carried out for 32 compounds selected from four pesticide classes (organochlorine, organonitrogen, organophosphorus and pyretroid) in blank and fortified samples of fresh lettuce, potato, apple and tomato. Recoveries for the majority of pesticides from fortified samples at fortification level of 0.04-0.10 mg kg -1 ranged 74-96% for both methods and confirmation of pesticide identity was performed by gas-chromatography-mass spectrometry in a selected-ion monitoring mode. Both methods showed good limits of detection (less 0.01 mg kg-1, depending on the pesticide and matrix) and the SFE method minimized environmental concerns, time, and laboratory work. ©2005 Sociedade Brasileira de Química.
Resumo:
Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3-22.7 %) and milk base heat treatment temperature (81.6-98.4°C) resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6-18.4°C) caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.
Resumo:
Different modifiers (IrCl3, W+IrCl3, Zr+IrCl 3) and coatings (Ir, W-Ir, Zr-Ir) were evaluated for the simultaneous determination of arsenic, bismuth, lead, antimony, and selenium in milk by graphite furnace atomic absorption spectrometry using the 'end-capped' transversely heated graphite atomizer (THGA). Integrated platform, pretreated with Zr-Ir as permanent modifier, was elected as the optimum surface modification resulting in up to 250 firings. Two additional recoatings were possible without significant changes in the analytical performance (750 firings). For 20 μL of matrix-matched standard solutions using diluted (1:10) milk samples, typical correlation coefficients between integrated absorbance and analyte concentration (5.00-20.0 μg/L) was always better than 0.999. The levels of the analytes found in commercial milk samples were lower than the limit of detection: 2.9 μg/L As, 2.9 μg/L Bi, 1.8 μg/L Pb, 1.9 μg/L Sb, and 2.5 μg/L Se. Recoveries were found within the following intervals: 88-114% for As, 89-118% for Bi, 89-113% for Pb, 91-115% for Sb, and 92-115% for Se. The relative standard deviations (n = 12) were ≤2% (As), ≤ 5% (Bi), ≤ 1.4% (Pb), ≤ 3% (Sb), and 5% (Se), and the respective calculated characteristic masses were 54 pg As, 55 pg Bi, 40 pg Pb, 56 pg Sb, and 51 pg Se.
Resumo:
This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme, remaining 100% active when incubated at 75°C for 1 h. © 2007 Humana Press Inc.