843 resultados para shape completion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confining concrete sections to improve their shear strength, flexural ductility and ultimate strain capacity. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit a beam-column joint in non-seismically designed reinforced concrete buildings.

The complex material behaviour of SMAs depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape stabilised phase change materials (SSPCMs) based on a high density poly(ethylene)(hv-HDPE) with high (H-PW, Tm = 56–58 °C) and low (L-PW, Tm = 18–23 °C) melting point paraffin waxes were readily prepared using twin-screw extrusion. The thermo-physical properties of these materials were assessed using a combination of techniques and their suitability for latent heat thermal energy storage (LHTES) assessed. The melt processing temperature (160 °C) of the HDPE used was well below the onset of thermal decomposition of H-PW (220 °C), but above that for L-PW (130 °C), although the decomposition process extended over a range of 120 °C and the residence time of L-PW in the extruder was <30 s. The SSPCMs prepared had latent heats up to 89 J/g and the enthalpy values for H-PW in the respective blends decreased with increasing H-PW loading, as a consequence of co-crystallisation of H-PW and hv-HDPE. Static and dynamic mechanical analysis confirmed both waxes have a plasticisation effect on this HDPE. Irrespective of the mode of deformation (tension, flexural, compression) modulus and stress decreased with increased wax loading in the blend, but the H-PW blends were mechanically superior to those with L-PW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from the experimental investigation on heat activated prestressing of Shape Memory Alloy (SMA) wires for active confinement of concrete sections. Active confinement of concrete is found to be much more effective than passive confinement which becomes effective only when the concrete starts to dilate. Active confinement achieved using conventional prestressing techniques often faces many obstacles due to practical limitations. A class of smart materials that has recently drawn attention in civil engineering is the super elastic SMA which has the ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of SMAs can be utilized to develop a convenient prestressing technique for active confinement of concrete sections.
In this study a series of experimental tests are conducted to study Heat Activated Prestress (HAP) in SMAs. Three different types of tests are conducted with different loading protocol to determine parameters such as HAP, residual strain after heating and range of strain that can be used for effective active confinement after HAP. Test results show a maximum HAP of about 500 MPa can be achieved after heating and approximately 450MPa is retained at 25oC in specimens pre-strained by 6%. A substantial amount of strain recovery upon unloading and after heating the SMA wires is recorded. About 2.5% elastic strain recovery upon unloading from 6% strain level is observed. In the specimen pre-strained by 6%, a total of 4% strain is recovered when unloaded after heating. A strain range of 3% is found available for effective confinement after HAP. Test results demonstrate that SMAs have unique features that can be intelligently employed in many civil engineering applications including active confinement of concrete sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion fatigue is a fracture process as a consequence of synergistic interactions between the material structure, corrosive environment and cyclic loads/strains. It is difficult to be detected and can cause unexpected failure of engineering components in use. This study reveals a comparison of corrosion fatigue behaviour of laser-welded and bare NiTi wires using bending rotation fatigue (BRF) test coupled with a specifically-designed corrosion cell. The testing medium was Hanks’ solution (simulated body fluid) at 37.5 oC. Electrochemical impedance spectroscopic (EIS) measurement was carried out to monitor the change of corrosion resistance of sample during the BRF test at different periods of time. Experiments indicate that the laser-welded NiTi wire would be more susceptible to the corrosion fatigue attack than the bare NiTi wire. This study can serve as a benchmark for the product designers and engineers to understand the corrosion fatigue behaviour of the NiTi laser weld joint and determine the fatigue life safety factor for NiTi medical devices/implants involving laser welding in the fabrication process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degree distribution is a fundamental property of networks. While mean degree provides a standard measure of scale, there are several commonly used shape measures. Widespread use of a single shape measure would enable comparisons between networks and facilitate investigations about the relationship between degree distribution properties and other network features. This paper describes five candidate measures of heterogeneity and recommends the Gini coefficient. It has theoretical advantages over many of the previously proposed measures, is meaningful for the broad range of distribution shapes seen in different types of networks, and has several accessible interpretations. While this paper focusses on degree, the distribution of other node based network properties could also be described with Gini coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Por parte da indústria de estampagem tem-se verificado um interesse crescente em simulações numéricas de processos de conformação de chapa, incluindo também métodos de engenharia inversa. Este facto ocorre principalmente porque as técnicas de tentativa-erro, muito usadas no passado, não são mais competitivas a nível económico. O uso de códigos de simulação é, atualmente, uma prática corrente em ambiente industrial, pois os resultados tipicamente obtidos através de códigos com base no Método dos Elementos Finitos (MEF) são bem aceites pelas comunidades industriais e científicas Na tentativa de obter campos de tensão e de deformação precisos, uma análise eficiente com o MEF necessita de dados de entrada corretos, como geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser considerados os problemas inversos. No trabalho apresentado, os seguintes problemas inversos, em Mecânica computacional, são apresentados e analisados: (i) problemas de identificação de parâmetros, que se referem à determinação de parâmetros de entrada que serão posteriormente usados em modelos constitutivos nas simulações numéricas e (ii) problemas de definição geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção de uma determinada geometria após um processo de conformação. São introduzidas e implementadas novas estratégias de otimização, as quais conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo destas estratégias é tirar vantagem das potencialidades de cada algoritmo e melhorar a eficiência geral dos métodos clássicos de otimização, os quais são baseados em processos de apenas um estágio. Algoritmos determinísticos, algoritmos inspirados em processos evolucionários ou mesmo a combinação destes dois são usados nas estratégias propostas. Estratégias de cascata, paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias híbridas consistem na combinação de estratégias em cascata e paralelas. São apresentados e analisados dois métodos distintos para a avaliação da função objetivo em processos de identificação de parâmetros. Os métodos considerados são uma análise com um ponto único ou uma análise com elementos finitos. A avaliação com base num único ponto caracteriza uma quantidade infinitesimal de material sujeito a uma determinada história de deformação. Por outro lado, na análise através de elementos finitos, o modelo constitutivo é implementado e considerado para cada ponto de integração. Problemas inversos são apresentados e descritos, como por exemplo, a definição geométrica de chapas e ferramentas. Considerando o caso da otimização da forma inicial de uma chapa metálica a definição da forma inicial de uma chapa para a conformação de um elemento de cárter é considerado como problema em estudo. Ainda neste âmbito, um estudo sobre a influência da definição geométrica inicial da chapa no processo de otimização é efetuado. Este estudo é realizado considerando a formulação de NURBS na definição da face superior da chapa metálica, face cuja geometria será alterada durante o processo de conformação plástica. No caso dos processos de otimização de ferramentas, um processo de forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro perfeito após o forjamento, dois métodos distintos são considerados. No primeiro, a forma inicial do cilindro é otimizada e no outro a forma da ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar a superfície livre do cilindro são utilizados diferentes métodos. Para a definição da ferramenta são também utilizados diferentes parametrizações. As estratégias de otimização propostas neste trabalho resolvem eficientemente problemas de otimização para a indústria de conformação metálica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators.The finite element model is a single layer trinaguular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element elemenet layer or patch. An optimization of the patches position is perfomed to maximize the piezoelectric actuators efficiency as well as,the electric potential distribution is serach to reach the specified strusctura transverse displacement distribution is search to reach the specified structures trsnsverse displacement distribution (shape control). A gradient based algorithm is used for this purpose.Results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Development programmes to support newly qualified practitioners gain confidence in their first professional role often show varied levels of engagement, due to competing priorities and demands. In Scotland, the Flying Start NHS® programme uses a structured programme of online and work-based learning with associated mentoring, to support individuals through an often difficult transition to become capable, confident practitioners. . Whilst the programme was generally well received, the factors leading to widely varying completion rates between professions and organisations were not well understood. Aim: to identify the factors leading to successful completion of Flying Start, a transition programme for newly qualified practitioners. Method: A qualitative approach was adopted to gather data from two groups of participants. Semi-structured telephone interviews were conducted with strategic and management level participants (n=23), from five health boards in Scotland. Semi-structured interviews (n=22) and focus groups (n=11) were conducted with practitioners within 6 months either side of completing the programme. The interviews were transcribed and analysed using framework analysis. Results: Four key themes related to successful completion emerged from the analysis: organisational support; the format of the programme; understanding completion; motivation and incentives to complete. Factors leading to successful completion were identified at programme, organisational and individual level. These included clear communication and signposting, up-to-date and relevant content, links with continuing professional development frameworks, effective leadership, mentor and peer support, setting clear standards for assessment, and facilitating appropriate IT access. Conclusions: A strong strategic commitment to embedding a development programme for newly qualified practitioners can ensure the necessary support is available to encourage timely completion. The mentor’s role - to provide face-to-face support - is identified as a key factor in completion and is achieved through setting attainable targets, monitoring progress, and providing motivation. However organisational structures that facilitate the mentoring relationship are also necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method for recovering facial shape using an image of a face and a reference model. The zenith angle of the surface normal is recovered directly from the intensities of the image. The azimuth angle of the reference model is then combined with the calculated zenith angle in order to get a new field of surface normals. After integration of the needle map, the recovered surface has the effect of mapped facial features over the reference model. Experiments demonstrate that for the lambertian case, surface recovery is achieved with high accuracy. For non-Lambertian cases, experiments suggest potential for face recognition applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

View of the progress of the Mackenzie Chown Complex several months into construction.