965 resultados para sensorimotor synchronization
Resumo:
Defensive behaviors, such as withdrawing your hand to avoid potentially harmful approaching objects, rely on rapid sensorimotor transformations between visual and motor coordinates. We examined the reference frame for coding visual information about objects approaching the hand during motor preparation. Subjects performed a simple visuomanual task while a task-irrelevant distractor ball rapidly approached a location either near to or far from their hand. After the distractor ball appearance, single pulses of transcranial magnetic stimulation were delivered over the subject's primary motor cortex, eliciting motor evoked potentials (MEPs) in their responding hand. MEP amplitude was reduced when the ball approached near the responding hand, both when the hand was on the left and the right of the midline. Strikingly, this suppression occurred very early, at 70-80ms after ball appearance, and was not modified by visual fixation location. Furthermore, it was selective for approaching balls, since static visual distractors did not modulate MEP amplitude. Together with additional behavioral measurements, we provide converging evidence for automatic hand-centered coding of visual space in the human brain.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
The performance benefit when using Grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effect of the synchronization overhead, mainly due to the high variability of completion times of the different tasks, which, in turn, is due to the large heterogeneity of Grid nodes. For this reason, it is important to have models which capture the performance of such systems. In this paper we describe a queueing-network-based performance model able to accurately analyze Grid architectures, and we use the model to study a real parallel application executed in a Grid. The proposed model improves the classical modelling techniques and highlights the impact of resource heterogeneity and network latency on the application performance.
Resumo:
The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.
Resumo:
Several theories of the mechanisms linking perception and action require that the links are bidirectional, but there is a lack of consensus on the effects that action has on perception. We investigated this by measuring visual event-related brain potentials to observed hand actions while participants prepared responses that were spatially compatible (e.g., both were on the left side of the body) or incompatible and action type compatible (e.g., both were finger taps) or incompatible, with observed actions. An early enhanced processing of spatially compatible stimuli was observed, which is likely due to spatial attention. This was followed by an attenuation of processing for both spatially and action type compatible stimuli, likely to be driven by efference copy signals that attenuate processing of predicted sensory consequences of actions. Attenuation was not response-modality specific; it was found for manual stimuli when participants prepared manual and vocal responses, in line with the hypothesis that action control is hierarchically organized. These results indicate that spatial attention and forward model prediction mechanisms have opposite, but temporally distinct, effects on perception. This hypothesis can explain the inconsistency of recent findings on action-perception links and thereby supports the view that sensorimotor links are bidirectional. Such effects of action on perception are likely to be crucial, not only for the control of our own actions but also in sociocultural interaction, allowing us to predict the reactions of others to our own actions.
Resumo:
Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.
Resumo:
The ‘action observation network’ (AON), which is thought to translate observed actions into motor codes required for their execution, is biologically tuned: it responds more to observation of human, than non-human, movement. This biological specificity has been taken to support the hypothesis that the AON underlies various social functions, such as theory of mind and action understanding, and that, when it is active during observation of non-human agents like humanoid robots, it is a sign of ascription of human mental states to these agents. This review will outline evidence for biological tuning in the AON, examining the features which generate it, and concluding that there is evidence for tuning to both the form and kinematic profile of observed movements, and little evidence for tuning to belief about stimulus identity. It will propose that a likely reason for biological tuning is that human actions, relative to non-biological movements, have been observed more frequently while executing corresponding actions. If the associative hypothesis of the AON is correct, and the network indeed supports social functioning, sensorimotor experience with non-human agents may help us to predict, and therefore interpret, their movements.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.
Resumo:
A large proportion of international real estate investment is concentrated in the office markets of the world’s largest cities. However, many of these global cities are also key financial services centres, highlighting the possibility of reduced economic diversification from an investor’s perspective. This paper assesses the degree of synchronization in cycles across twenty of the world’s largest office markets, finding evidence of significant concordance across a large number of markets. The results highlight the problems associated with commonalities in the underlying economic bases of the markets. The concentration of investment also raises the possibility of common flow of funds effects that may further reduce diversification opportunities.
Resumo:
Ongoing debate in the literature concerns whether there is a link between contagious yawning and the human mirror neuron system (hMNS). One way of examining this issue is with the use of the electroencephalogram (EEG) to measure changes in mu activation during the observation of yawns. Mu oscillations are seen in the alpha bandwidth of the EEG (8–12 Hz) over sensorimotor areas. Previous work has shown that mu suppression is a useful index of hMNS activation and is sensitive to individual differences in empathy. In two experiments, we presented participants with videos of either people yawning or control stimuli. We found greater mu suppression for yawns than for controls over right motor and premotor areas, particularly for those scoring higher on traits of empathy. In a third experiment, auditory recordings of yawns were compared against electronically scrambled versions of the same yawns. We observed greater mu suppression for yawns than for the controls over right lateral premotor areas. Again, these findings were driven by those scoring highly on empathy. The results from these experiments support the notion that the hMNS is involved in contagious yawning, emphasise the link between contagious yawning and empathy, and stress the importance of good control stimuli.
Resumo:
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.
Resumo:
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement, and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons.
Resumo:
The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.
Resumo:
What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.