988 resultados para semi-parametric estimation
Resumo:
Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.
Resumo:
I discuss the identifiability of a structural New Keynesian Phillips curve when it is embedded in a small scale dynamic stochastic general equilibrium model. Identification problems emerge because not all the structural parameters are recoverable from the semi-structural ones and because the objective functions I consider are poorly behaved. The solution and the moment mappings are responsible for the problems.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
Seasonal activity of Dinoponera quadriceps Santschi (Formicidae, Ponerinae) in the semi-arid Caatinga of northeastern Brazil. We studied seasonal foraging patterns of the queenless ant D. quadriceps (Formicidae, Ponerinae) for 24 months in a Caatinga area of northeastern Brazil, an ecosystem characterized by strong climatic changes throughout the year, in order to determine if regulation of worker activity is based on environmental conditions (air temperature, relative humidity, precipitation) and/or food resources (potential prey: Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Araneae, Chilopoda and Diplopoda). Foraging activity of D. quadriceps varied over the course of both years, with the highest frequency occurring from May to August, corresponding to the late rainy season and early dry season. This foraging activity was negatively correlated with temperature and positively correlated with the availability of potential prey, but not with total abundance of soil arthropods or with rainfall and relative humidity. Diet composition, in relation to the main taxonomic prey groups, seems to be common to the species, regardless of habitat. Our results suggest that D. quadriceps workers adjust foraging activity to the most suitable period of the year, to avoid thermal stress and increase efficiency. Thus, they present an appropriate behavioral response to seasonal fluctuations in the Caatinga.
Resumo:
Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Resumo:
This paper considers a job search model where the environment is notstationary along the unemployment spell and where jobs do not lastforever. Under this circumstance, reservation wages can be lower thanwithout separations, as in a stationary environment, but they can alsobe initially higher because of the non-stationarity of the model. Moreover,the time-dependence of reservation wages is stronger than with noseparations. The model is estimated structurally using Spanish data forthe period 1985-1996. The main finding is that, although the decrease inreservation wages is the main determinant of the change in the exit ratefrom unemployment for the first four months, later on the only effect comesfrom the job offer arrival rate, given that acceptance probabilities areroughly equal to one.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical {\sc vc} dimension, empirical {\sc vc} entropy, andmargin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
The main information sources to study a particular piece of music are symbolic scores and audio recordings. These are complementary representations of the piece and it isvery useful to have a proper linking between the two of the musically meaningful events. For the case of makam music of Turkey, linking the available scores with the correspondingaudio recordings requires taking the specificities of this music into account, such as the particular tunings, the extensive usage of non-notated expressive elements, and the way in which the performer repeats fragmentsof the score. Moreover, for most of the pieces of the classical repertoire, there is no score written by the original composer. In this paper, we propose a methodology to pair sections of a score to the corresponding fragments of audio recording performances. The pitch information obtained from both sources is used as the common representationto be paired. From an audio recording, fundamental frequency estimation and tuning analysis is done to compute a pitch contour. From the corresponding score, symbolic note names and durations are converted to a syntheticpitch contour. Then, a linking operation is performed between these pitch contours in order to find the best correspondences.The method is tested on a dataset of 11 compositions spanning 44 audio recordings, which are mostly monophonic. An F3-score of 82% and 89% are obtained with automatic and semi-automatic karar detection respectively,showing that the methodology may give us a needed tool for further computational tasks such as form analysis, audio-score alignment and makam recognition.
Resumo:
O artigo procura analisar a relação que se estabelece entre o poder executivo e legislativo no sistema de governo cabo-verdiano, onde Investigadores buscam compreendê-lo, tendo em conta a sua configuração prática, teórica e constitucional. Há que realçar a proeminência do debate e dos estudos realizados no sentido de compreender como é que a academia científica procura debelar esta problemática. Duas questões são pertinentes neste debate: a primeira refere-se à configuração teórico-constitucional do sistema de governo cabo-verdiano e a outra à prática política e legislativa.
Resumo:
ABSTRACT Biomass is a fundamental measure for understanding the structure and functioning (e.g. fluxes of energy and nutrients in the food chain) of aquatic ecosystems. We aim to provide predictive models to estimate the biomass of Triplectides egleri Sattler, 1963, in a stream in Central Amazonia, based on body and case dimensions. We used body length, head-capsule width, interocular distance and case length and width to derive biomass estimations. Linear, exponential and power regression models were used to assess the relationship between biomass and body or case dimensions. All regression models used in the biomass estimation of T. egleri were significant. The best fit between biomass and body or case dimensions was obtained using the power model, followed by the exponential and linear models. Body length provided the best estimate of biomass. However, the dimensions of sclerotized structures (interocular distance and head-capsule width) also provided good biomass predictions, and may be useful in estimating biomass of preserved and/or damaged material. Case width was the dimension of the case that provided the best estimate of biomass. Despite the low relation, case width may be useful in studies that require low stress on individuals.
Resumo:
e article analyses the relationship established between the executive and legislative powers in the Cape Verdean government system where researchers seek to understand it, taking into account their theoretical and constitutional setting practice. It should be noted the prominence of the debate and studies undertaken to understand how the scienti c academy seeks to eradicate this problem. Two issues are relevant in this debate: the rst reporting to the theoretical and constitutional con guration of Cape Verdean government system and the other to its policy and legislative practice. Keywords: Cape Verde. Semi-presidential System. Systems of Government. Legislative and Executive Powers.
Resumo:
Two methods were evaluated for scaling a set of semivariograms into a unified function for kriging estimation of field-measured properties. Scaling is performed using sample variances and sills of individual semivariograms as scale factors. Theoretical developments show that kriging weights are independent of the scaling factor which appears simply as a constant multiplying both sides of the kriging equations. The scaling techniques were applied to four sets of semivariograms representing spatial scales of 30 x 30 m to 600 x 900 km. Experimental semivariograms in each set successfully coalesced into a single curve by variances and sills of individual semivariograms. To evaluate the scaling techniques, kriged estimates derived from scaled semivariogram models were compared with those derived from unscaled models. Differences in kriged estimates of the order of 5% were found for the cases in which the scaling technique was not successful in coalescing the individual semivariograms, which also means that the spatial variability of these properties is different. The proposed scaling techniques enhance interpretation of semivariograms when a variety of measurements are made at the same location. They also reduce computational times for kriging estimations because kriging weights only need to be calculated for one variable. Weights remain unchanged for all other variables in the data set whose semivariograms are scaled.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.