905 resultados para sampling effort


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Currently, in forensic medicine cross-sectional imaging gains recognition and a wide use as a non-invasive examination approach. Today, computed tomography (CT) or magnetic resonance imaging that are available for patients are unable to provide tissue information on the cellular level in a non-invasive manner and also diatom detection, DNA, bacteriological, chemical toxicological and other specific tissue analyses are impossible using radiology. We hypothesised that post-mortem minimally invasive tissue sampling using needle biopsies under CT guidance might significantly enhance the potential of virtual autopsy. The purpose of this study was to test the use of a clinically approved biopsy needle for minimally invasive post-mortem sampling of tissue specimens under CT guidance. MATERIAL AND METHODS: ACN III biopsy core needles 14 gauge x 160 mm with automatic pistol device were used on three bodies dedicated to research from the local anatomical institute. Tissue probes from the brain, heart, lung, liver, spleen, kidney and muscle tissue were obtained under CT fluoroscopy. RESULTS: CT fluoroscopy enabled accurate placement of the needle within the organs and tissues. The needles allowed for sampling of tissue probes with a mean width of 1.7 mm (range 1.2-2 mm) and the maximal length of 20 mm at all locations. The obtained tissue specimens were of sufficient size and adequate quality for histological analysis. CONCLUSION: Our results indicate that, similar to the clinical experience but in many more organs, the tissue specimens obtained using the clinically approved biopsy needle are of a sufficient size and adequate quality for a histological examination. We suggest that post-mortem biopsy using the ACN III needle under CT guidance may become a reliable method for targeted sampling of tissue probes of the body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geostatistics involves the fitting of spatially continuous models to spatially discrete data (Chil`es and Delfiner, 1999). Preferential sampling arises when the process that determines the data-locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non-preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration samples may be concentrated in areas thought likely to yield high-grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately using Monte Carlo methods. We present a model for preferential sampling, and demonstrate through simulated examples that ignoring preferential sampling can lead to seriously misleading inferences. We describe an application of the model to a set of bio-monitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the inferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus is associated with a number of well-known, specific macro- and microvascular as well as neuropathic complications. The typical and specific association of microvascular and neuropathic complications with diabetes suggests a causal relationship with hyperglycemia or associated metabolic abnormalities. The results of the Diabetes Control and Complications Trial (DCCT) as well as other recent studies have demonstrated that in patients with insulin-dependent diabetes mellitus (IDDM) the incidence of retinopathy, nephropathy and neuropathy can be reduced by intensive treatment. Strategies of intensified insulin therapy and the clinical importance of improved diabetic control are outlined in view of these studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The goal of this study was to determine whether site-specific differences in the subgingival microbiota could be detected by the checkerboard method in subjects with periodontitis. Methods: Subjects with at least six periodontal pockets with a probing depth (PD) between 5 and 7 mm were enrolled in the study. Subgingival plaque samples were collected with sterile curets by a single-stroke procedure at six selected periodontal sites from 161 subjects (966 subgingival sites). Subgingival bacterial samples were assayed with the checkerboard DNA-DNA hybridization method identifying 37 species. Results: Probing depths of 5, 6, and 7 mm were found at 50% (n = 483), 34% (n = 328), and 16% (n = 155) of sites, respectively. Statistical analysis failed to demonstrate differences in the sum of bacterial counts by tooth type (P = 0.18) or specific location of the sample (P = 0.78). With the exceptions of Campylobacter gracilis (P <0.001) and Actinomyces naeslundii (P <0.001), analysis by general linear model multivariate regression failed to identify subject or sample location factors as explanatory to microbiologic results. A trend of difference in bacterial load by tooth type was found for Prevotella nigrescens (P <0.01). At a cutoff level of >/=1.0 x 10(5), Porphyromonas gingivalis and Tannerella forsythia (previously T. forsythensis) were present at 48.0% to 56.3% and 46.0% to 51.2% of sampled sites, respectively. Conclusions: Given the similarities in the clinical evidence of periodontitis, the presence and levels of 37 species commonly studied in periodontitis are similar, with no differences between molar, premolar, and incisor/cuspid subgingival sites. This may facilitate microbiologic sampling strategies in subjects during periodontal therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive and exotic species present a serious threat to the health and sustainability of natural ecosystems. These species often benefit from anthropogenic activities that aid their introduction and dispersal. This dissertation focuses on invasion dynamics of the emerald ash borer, native to Asia, and European earthworms. These species have shown detrimental impacts in invaded forest ecosystems across the Great Lakes region, and continue to spread via human-assisted long distance dispersal and by natural modes of dispersal into interior forests from areas of introduction. Successful forest management requires that the impact and effect of invasive species be considered and incorporated into management plans. Understanding patterns and constraints of introduction, establishment, and spread will aid in this effort. To assist in efforts to locate introduction points of emerald ash borer, a multicriteria risk model was developed to predict the highest risk areas. Important parameters in the model were road proximity, land cover type, and campground proximity. The model correctly predicted 85% of known emerald ash borer invasion sites to be at high risk. The model’s predictions across northern Michigan can be used to focus and guide future monitoring efforts. Similar modeling efforts were applied to the prediction of European earthworm invasion in northern Michigan forests. Field sampling provided a means to improve upon modeling efforts for earthworms to create current and future predictions of earthworm invasion. Those sites with high soil pH and high basal area of earthworm preferred overstory species (such as basswood and maples) had the highest likelihood of European earthworm invasion. Expanding beyond Michigan into the Upper Great Lakes region, earthworm populations were sampled across six National Wildlife Refuges to identify potential correlates and deduce specific drivers and constraints of earthworm invasion. Earthworm communities across all refuges were influenced by patterns of anthropogenic activity both within refuges and in surrounding ecoregions of study. Forest composition, soil pH, soil organic matter, anthropogenic cover, and agriculture proximity also proved to be important drivers of earthworm abundance and community composition. While there are few management options to remove either emerald ash borer or European earthworms from forests after they have become well established, prevention and early detection are important and can be beneficial. An improved understanding the factors controlling the distribution and invasion patterns of exotic species across the landscape will aid efforts to determine their consequences and generate appropriate forest management solutions to sustain ecosystem health in the presence of these invaders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Development of an interpolation algorithm for re‐sampling spatially distributed CT‐data with the following features: global and local integral conservation, avoidance of negative interpolation values for positively defined datasets and the ability to control re‐sampling artifacts. Method and Materials: The interpolation can be separated into two steps: first, the discrete CT‐data has to be continuously distributed by an analytic function considering the boundary conditions. Generally, this function is determined by piecewise interpolation. Instead of using linear or high order polynomialinterpolations, which do not fulfill all the above mentioned features, a special form of Hermitian curve interpolation is used to solve the interpolation problem with respect to the required boundary conditions. A single parameter is determined, by which the behavior of the interpolation function is controlled. Second, the interpolated data have to be re‐distributed with respect to the requested grid. Results: The new algorithm was compared with commonly used interpolation functions based on linear and second order polynomial. It is demonstrated that these interpolation functions may over‐ or underestimate the source data by about 10%–20% while the parameter of the new algorithm can be adjusted in order to significantly reduce these interpolation errors. Finally, the performance and accuracy of the algorithm was tested by re‐gridding a series of X‐ray CT‐images. Conclusion: Inaccurate sampling values may occur due to the lack of integral conservation. Re‐sampling algorithms using high order polynomialinterpolation functions may result in significant artifacts of the re‐sampled data. Such artifacts can be avoided by using the new algorithm based on Hermitian curve interpolation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins are linear chain molecules made out of amino acids. Only when they fold to their native states, they become functional. This dissertation aims to model the solvent (environment) effect and to develop & implement enhanced sampling methods that enable a reliable study of the protein folding problem in silico. We have developed an enhanced solvation model based on the solution to the Poisson-Boltzmann equation in order to describe the solvent effect. Following the quantum mechanical Polarizable Continuum Model (PCM), we decomposed net solvation free energy into three physical terms– Polarization, Dispersion and Cavitation. All the terms were implemented, analyzed and parametrized individually to obtain a high level of accuracy. In order to describe the thermodynamics of proteins, their conformational space needs to be sampled thoroughly. Simulations of proteins are hampered by slow relaxation due to their rugged free-energy landscape, with the barriers between minima being higher than the thermal energy at physiological temperatures. In order to overcome this problem a number of approaches have been proposed of which replica exchange method (REM) is the most popular. In this dissertation we describe a new variant of canonical replica exchange method in the context of molecular dynamic simulation. The advantage of this new method is the easily tunable high acceptance rate for the replica exchange. We call our method Microcanonical Replica Exchange Molecular Dynamic (MREMD). We have described the theoretical frame work, comment on its actual implementation, and its application to Trp-cage mini-protein in implicit solvent. We have been able to correctly predict the folding thermodynamics of this protein using our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish behaviourists are increasingly turning to non-invasive measurement of steroid hormones in holding water, as opposed to blood plasma. When some of us met at a workshop in Faro, Portugal, in September, 2007, we realised that there were still many issues concerning the application of this procedure that needed resolution, including: Why do we measure release rates rather than just concentrations of steroids in the water? How does one interpret steroid release rates when dealing with fish of different sizes? What are the merits of measuring conjugated as well as free steroids in water? In the ‘static’ sampling procedure, where fish are placed in a separate container for a short period of time, does this affect steroid release—and, if so, how can it be minimised? After exposing a fish to a behavioural stimulus, when is the optimal time to sample? What is the minimum amount of validation when applying the procedure to a new species? The purpose of this review is to attempt to answer these questions and, in doing so, to emphasize that application of the non-invasive procedure requires more planning and validation than conventional plasma sampling. However, we consider that the rewards justify the extra effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peatlands cover only ~3% of the global land area, but store ~30% of the worlds' soil carbon. There are many different peat types that store different amounts of carbon. Most inventories of carbon storage in northern peatlands have been conducted in the expansive Sphagnum dominated peatlands. Although, northern white cedar peatlands (NW cedar, Thuja occidentalis L.) are also one of the most common peatland types in the Great Lakes Region, occupying more than 2 million hectares. NW cedar swamps are understudied, due in part to the difficulties in collection methods. General lack of rapid and consistent sampling methods has also contributed in a lack of carbon stock quantification for many peatlands. The main objective of this thesis is to quantify: 1) to evaluate peat sampling methods 2) the amount of C-stored and the rates of long-term carbon accumulation in NW cedar peatlands. We sampled 38 peatlands separated into four categories (black ash, NW cedar swamp, sedge, and Sphagnum) during the summers of 2011/2012 across northern MN and the Upper Peninsula of MI. Basal dates of peat indicate that cedar peatlands were between 1970-7790 years old. Cedar peatlands are generally shallower than Sphagnum peat, but due to their higher bulk density, hold similar amounts of carbon with our sites averaging ~800 MgC ha-1. We estimate that NW cedar peatlands store over 1.7 Gt of carbon in the Great Lakes Region. Each of the six methods evaluated had a different level of accuracy and requires varying levels of effort and resources. The depth only method and intermittent sampling method were the most accurate methods of peatland sampling.