964 resultados para road vehicles
Resumo:
In the recent manuscript published by Egodawatta et al. (2013), the authors investigated the build-up process of heavy metals (HMs) associated with road-deposited sediment (RDS) on residential road surfaces, and presented empirical models for the prediction of both the surface loads and build-up rates of HMs on these surfaces...
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from moving traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement of the road barriers and vehicle redirectionality. Actual road safety barrier test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase prior to real vehicle test. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many is done pertaining to PWFB. This research probes a new method to model joint mechanism in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy to real work applications. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
Road crashes contribute to a significant amount of child mortality and morbidity in Australia. In fact, passenger injuries contribute to the majority of child crash road trauma. A number of factors contribute to child injury and death in motor vehicles, including inappropriate seating position, inappropriate choice of restraint, and incorrect installation and use of child restraints. Prior to March 2010, child restraint legislation in Queensland only required children twelve months and younger to be seated in a properly adjusted and fastened child restraint. This legislation left older infants and young children potentially suboptimally protected. From March 2010, new legislation specified seating position and type of child restraint required, depending on the age of the child. This research was underpinned by the Health Belief Model (HBM), which explores health related behaviour, behaviour change, environmental factors influencing behaviour change (including legislative changes) and is flexible enough to be used in relation to parents' health practices for their children, rather than parent health directly. This thesis investigates the extent to which the changes to child restraint legislation have led parents in regional areas of Queensland to use appropriate restraint practices for their children and determines the extent to which the constructs of the HBM, parental perceptions, barriers and environmental factors contribute to the appropriateness of child seating and restraint use. Study One included three sets of observations taken in two regional cities of Queensland prior to the legislative amendment, during an educative period of six months, and after the enactment of the legislation. Each child's seating position and restraint type were recorded. Results showed that the proportion of children observed occupying the front seat decreased by 15.6 per cent with the announcement the legislation. There was no decrease in front seat use at the enactment of the legislation. The proportion of children observed using dedicated child restraints increased by 8.8 per cent with the announcement of the legislation when there was one child in the vehicle. Further, there was a 10.1 per cent increase in the proportion of children observed using a seat belt that fit with the announcement when there was one child in the vehicle and with the enactment of the legislation regardless of the number of children in the vehicle (21.8 per cent for one child, 39.7 per cent for two children and 40.2 per cent for three or more children). Study Two comprised initial intercept interviews, later followed up by telephone, with parents with children aged eight years and younger at the announcement and telephone interviews at the enactment of the legislation in one regional city in Queensland. Parents reported their child restraint practices, and opinions, knowledge and understanding of the requirements of the new legislation. Parent responses were analysed in terms of the constructs in the HBM. When asked which seating position their child 'usually' used, parents reported child front seat use was nil (0.0 per cent) and did not change with the enactment of the legislative amendment. However, when parents were asked whether they allowed children to use the front seat at some point within the six months prior to the interview, reported child front seat use was 7 (5.4 per cent) children at T2 and 10 (9.6 per cent) at T3. Reported use of age-appropriate child restraints did not increase with the enactment of the legislation (p = 0.77, ns). Parents reported restraint practices were classed as either appropriate or inappropriate. Parents who reported appropriate restraint practices were those whose children were sitting in optimal restraints and seating positions for their age according to the requirements of the legislation. Parents who reported inappropriate restraint practices were those who had one or more children who were suboptimally restrained or seated for their age according to the requirements of the legislation. Neither parents' perceptions about their susceptibility of being in a crash nor the likelihood of severity of child injury if involved in a crash yielded significant differences in the appropriateness of reported parent restraint practices over time with the enactment of the legislation. A trend in the data suggested parents perceived a benefit to using appropriate restraint practices was to avoid fines and demerit points. Over 75 per cent of parents who agreed that child restraints provide better protection for children than an adult seat belt reported appropriately seating and restraining their children (2 (1) = 8.093, p<.05). The self-efficacy measure regarding parents' confidence in installing a child restraint showed a significant association with appropriate parental restraint practices (2 (1) = 7.036, p<.05). Results suggested that some parents may have misinterpreted the announcement of the legislative amendment as the announcement of the enforcement of the legislation instead. Some parents who correctly reported details of the legislation did not report appropriate child restraint practices. This finding shows that parents' knowledge of the legislative amendment does not necessarily have an impact on their behaviour to appropriately seat and restrain children. The results of these studies have important implications for road safety and the prevention of road-related injury and death to children in Queensland. Firstly, parents reported feeling unsure of how to install restraints, which suggests that there may be children travelling in restraints that have not been installed correctly, putting them at risk. Interventions to alert and encourage parents to seek advice when unsure about the correct installation of child restraints could be considered. Secondly, some parents in this study although they were using the most appropriate restraint for their children, reported using a type that was not the most appropriate restraint for the child's age according to the legislation. This suggests that intervention may be effective in helping parents make a more accurate choice of the most appropriate type of restraint to use with children, especially as the child ages and child restraint requirements change. Further research could be conducted to ascertain the most effective methods of informing and motivating parents to use the most appropriate restraints and seating positions for their children, as these results show a concerning disparity between reported restraint practices and those that were observed.
Resumo:
Residential balcony design influences speech interference levels caused by road traffic noise and a simplified design methodology is needed for optimising balcony acoustic treatments. This research comprehensively assesses speech interference levels and benefits of nine different balcony designs situated in urban street canyons through the use of a combined direct, specular reflection and diffuse reflection path theoretical model. This thesis outlines the theory, analysis and results that lead up to the presentation of a practical design guide which can be used to predict the acoustic effects of balcony geometry and acoustic treatments in streets with variable geometry and acoustic characteristics.
Resumo:
Police in-vehicle systems include a visual output mobile data terminal (MDT) with manual input via touch screen and keyboard. This study investigated the potential for voice-based input and output modalities for reducing subjective workload of police officers while driving. Nineteen experienced drivers of police vehicles (one female) from New South Wales (NSW) Police completed four simulated urban drives. Three drives included a concurrent secondary task: an imitation licence number search using an emulated MDT. Three different interface output-input modalities were examined: Visual-Manual, Visual-Voice, and Audio-Voice. Following each drive, participants rated their subjective workload using the NASA - Raw Task Load Index and completed questions on acceptability. A questionnaire on interface preferences was completed by participants at the end of their session. Engaging in secondary tasks while driving significantly increased subjective workload. The Visual-Manual interface resulted in higher time demand than either of the voice-based interfaces and greater physical demand than the Audio-Voice interface. The Visual-Voice and Audio-Voice interfaces were rated easier to use and more useful than the Visual-Manual interface, although not significantly different from each other. Findings largely echoed those deriving from the analysis of the objective driving performance data. It is acknowledged that under standard procedures, officers should not drive while performing tasks concurrently with certain invehicle policing systems; however, in practice this sometimes occurs. Taking action now to develop voice-based technology for police in-vehicle systems has potential to realise visions for potentially safer and more efficient vehicle-based police work.
Resumo:
Collisions between distinct road users (e.g. drivers and riders, drivers and cyclists) make a substantial contribution to the road trauma burden. Although evidence suggests different road users interpret the same road situations contrarily, it is not clear how their situation awareness differs, nor is it clear which differences might lead to conflicts. This article presents the findings from an on-road study which was conducted to examine driver, cyclist and motorcyclist situation awareness in different road environments. The findings suggest that drivers, motorcyclists, and cyclists develop markedly different situational understandings even when operating in the same road environments. Examination of these differences indicate that they are likely to be compatible along arterial roads, shopping strips and at roundabouts, but that they may create conflicts between the different road users at intersections. The key role of road design in supporting compatible situation awareness and behaviour across different road users is discussed.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles (BEVs) is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using a custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the lifecycle cost benefits as simulated appear to be marginal, and are heavily influenced by the incremental cost of power components. However, additional factors are identified which, in reality, will drive ultracapacitors towards viability in electric vehicle applications.
Resumo:
Situation awareness, ones understanding of ‘what is going on’, is a critical commodity for road users. Although the concept has received much attention in the driving context, situation awareness in vulnerable road users, such as cyclists, remains unexplored. This paper presents the findings from an exploratory on-road study of cyclist situation awareness, the aim of which was to explore how cyclists develop situation awareness, what their situation awareness comprises, and what the causes of degraded cyclist situation awareness may be. Twenty participants cycled a pre-defined urban on-road study route. A range of data were collected, including verbal protocols, forward scene video and rear video, and a network analysis procedure was used to describe and assess cyclist situation awareness. The analysis produced a number of key findings regarding cyclist situation awareness, including the potential for cyclists’ awareness of other road users to be degraded due to additional situation awareness and decision making requirements that are placed on them in certain road situations. Strategies for improving cyclists’ situation awareness are discussed.
Resumo:
We conducted on-road and simulator studies to explore the mechanisms underpinning driver-rider crashes. In Study 1 the verbal protocols of 40 drivers and riders were assessed at intersections as part of a 15km on-road route in Melbourne. Network analysis of the verbal transcripts highlighted key differences in the situation awareness of drivers and riders at intersections. In a further study using a driving simulator we examined in car drivers the influence of acute exposure to motorcyclists. In a 15 min simulated drive, 40 drivers saw either no motorcycles or a high number of motorcycles in the surrounding traffic. In a subsequent 45-60 min drive, drivers were asked to detect motorcycles in traffic. The proportion of motorcycles was manipulated so that there was either a high (120) or low (6) number of motorcycles during the drive. Those drivers exposed to a high number of motorcycles were significantly faster at detecting motorcycles. Fundamentally, the incompatible situation awareness at intersections by drivers and riders underpins the conflicts. Study 2 offers some suggestion for a countermeasure here, although more research around schema and exposure training to support safer interactions is needed.
Resumo:
Collisions among trains and cars at road/rail level crossings (LXs) can have severe consequences such as high level of fatalities, injuries and significant financial losses. As communication and positioning technologies have significantly advanced, implementing vehicular ad hoc networks (VANETs) in the vicinity of unmanned LXs, generally LXs without barriers, is seen as an efficient and effective approach to mitigate or even eliminate collisions without imposing huge infrastructure costs. VANETs necessitate unique communication strategies, in which routing protocols take a prominent part in their scalability and overall performance, through finding optimised routes quickly and with low bandwidth overheads. This article studies a novel geo-multicast framework that incorporates a set of models for communication, message flow and geo-determination of endangered vehicles with a reliable receiver-based geo-multicast protocol to support cooperative level crossings (CLXs), which provide collision warnings to the endangered motorists facing road/rail LXs without barriers. This framework is designed and studied as part of a $5.5 m Government and industry funded project, entitled 'Intelligent-Transport-Systems to improve safety at road/rail crossings'. Combined simulation and experimental studies of the proposed geo-multicast framework have demonstrated promising outcomes as cooperative awareness messages provide actionable critical information to endangered drivers who are identified by CLXs.
Resumo:
Following eco-driving instructions can reduce fuel consumption between 5 to 20% on urban roads with manual cars. The majority of Australian cars have an automatic transmission gear-box. It is therefore of interest to verify whether current eco-driving instructions are e cient for such vehicles. In this pilot study, participants (N=13) drove an instrumented vehicle (Toyota Camry 2007) with an automatic transmission. Fuel consumption of the participants was compared before and after they received simple eco-driving instructions. Participants drove the same vehicle on the same urban route under similar tra c conditions. We found that participants drove at similar speeds during their baseline and eco-friendly drives, and reduced the level of their accelerations and decelerations during eco-driving. Fuel consumption decreased for the complete drive by 7%, but not on the motorway and inclined sections of the study. Gas emissions were estimated with the VT-micro model, and emissions of the studied pollutants (CO2, CO, NOX and HC) were reduced, but no di erence was observed for CO2 on the motorway and inclined sections. The di erence for the complete lap is 3% for CO2. We have found evidence showing that simple eco-driving instructions are e cient in the case of automatic transmission in an urban environment, but towards the lowest values of the spectrum of fuel consumption reduction from the di erent eco-driving studies.
Resumo:
Distraction resulting from mobile phone use whilst driving has been shown to increase the reaction times of drivers, thereby increasing the likelihood of a crash. This study compares the effects of mobile phone conversations on reaction times of drivers responding to traffic events that occur at different points in a driver’s field of view. The CARRS-Q Advanced Driving Simulator was used to test a group of young drivers on various simulated driving tasks including a traffic event that occurred within the driver’s central vision—a lead vehicle braking suddenly—and an event that occurred within the driver’s peripheral—a pedestrian entering a zebra crossing from a footpath. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), and while engaged in hands-free and handheld phone conversations. The drivers were aged between 21 to 26 years and split evenly by gender. Differences in reaction times for an event in a driver’s central vision were not statistically significant across phone conditions, probably due to a lower speed selection by the distracted drivers. In contrast, the reaction times to detect an event that originated in a distracted driver’s peripheral vision were more than 50% longer compared to the baseline condition. A further statistical analysis revealed that deterioration of reaction times to an event in the peripheral vision was greatest for distracted drivers holding a provisional licence. Many critical events originate in a driver’s periphery, including vehicles, bicyclists, and pedestrians emerging from side streets. A reduction in the ability to detect these events while distracted presents a significant safety concern that must be addressed.
Resumo:
Despite of significant contributions of urban road transport to global economy and society, it is one of the largest sources of local and global emission impact. In order to address the environmental concerns of urban road transport it is imperative to achieve a holistic understanding of contributory factors causing emissions which requires a complete look onto its whole life cycle. Previous studies were mainly based on segmental views which mostly studied environmental impacts of individual transport modes and very few considered impacts other than operational phase. This study develops an integrated life cycle inventory model for urban road transport emissions from a holistic modal perspective. Singapore case was used to demonstrate the model. Results show that total life cycle greenhouse gas emission from Singapore’s road transport sector is 7.8 million tons per year. The total amount of criteria air pollutants are also estimated in this study.