912 resultados para real time monitoring
Resumo:
Phenotypic identification of Gram-negative bacteria from respiratory specimens of patients with cystic fibrosis carries a high risk of misidentification. Molecular identification techniques that use single-gene targets are also susceptible to error, including cross-reaction issues with other Gram-negative organisms. In this study, we have designed a Pseudomonas aeruginosa duplex real-time polymerase chain reaction (PCR) (PAduplex) assay targeting the ecfX and the gyrB genes. The PAduplex was evaluated against a panel of 91 clinical and environmental isolates that were presumptively identified as P. aeruginosa. The results were compared with those obtained using a commercial biochemical identification kit and several other P. aeruginosa PCR assays. The results showed that the PAduplex assay is highly suitable for routine identification of P. aeruginosa isolates from clinical or environmental samples. The 2-target format provides simultaneous confirmation of P. aeruginosa identity where both the ecfX and gyrB PCR reactions are positive and may also reduce the potential for false negatives caused by sequence variation in primer or probe targets.
Resumo:
The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers in a range of conditions. One rate-limiting factor is the time taken to perform quantitative real time PCR amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes. Quantitative PCR was performed on an xxpress® thermal cycler (BJS Biotechnologies, Perivale, UK), which employs a resistive heating system and forced air cooling to achieve thermal ramp rates of 10 °C/s, and a conventional peltier-controlled LightCycler 480 system (Roche, Basel, Switzerland) ramping at 4.8 °C/s. The threshold cycle (Ct) for detection of 18S rDNA from a standard genomic DNA sample was significantly more variable across the block (F-test, p=2.4x10-25) for the xxpress (20.01±0.47SD) than the LightCycler (19.87±0.04SD). RNA was extracted from human plasma, reverse transcribed and a panel of miRNAs amplified and detected using SYBR green (Kapa Biosystems, Wilmington, Ma, USA). The sensitivity of both systems was broadly comparable and both detected a panel of miRNAs reliably and indicated similar relative abundances. The xxpress thermal cycler facilitates rapid qPCR detection of small RNAs and brings point-of care diagnostics based upon circulating miRNAs a step closer to reality.
Resumo:
Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.
Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.
Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.
Setting: Critical care departments within NHS hospitals in the north-west of England.
Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation.
Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.
Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.
Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.
Resumo:
The use of TiO 2 photocatalysis for the destruction of dyes such as methylene blue has been extensively reported. One of the challenges faced in both the laboratory and large scale water treatment plants is the fact that the samples have to be removed from the reactor vessel and the catalyst separated prior to analysis being undertaken. In this paper we report the development of a simple fluorimeter instrument and its use in monitoring the photocatalytic destruction of methylene blue dyes in the presence of catalyst suspensions. The results reported show that the instrument provides an effective method for in situ monitoring of the photocatalytic destruction of fluorescent dyes hence allowing more accurate measurement due to the minimisation of sample loss and cross contamination. Furthermore it also provides a method for real time monitoring of the dye pollutant destruction in large scale photocatalytic reactors.
Resumo:
premiered by Mel Puga Iglesias
Resumo:
Game-theoretic security resource allocation problems have generated significant interest in the area of designing and developing security systems. These approaches traditionally utilize the Stackelberg game model for security resource scheduling in order to improve the protection of critical assets. The basic assumption in Stackelberg games is that a defender will act first, then an attacker will choose their best response after observing the defender’s strategy commitment (e.g., protecting a specific asset). Thus, it requires an attacker’s full or partial observation of a defender’s strategy. This assumption is unrealistic in real-time threat recognition and prevention. In this paper, we propose a new solution concept (i.e., a method to predict how a game will be played) for deriving the defender’s optimal strategy based on the principle of acceptable costs of minimax regret. Moreover, we demonstrate the advantages of this solution concept by analyzing its properties.
An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
Resumo:
Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.
Resumo:
We present a mathematically rigorous Quality-of-Service (QoS) metric which relates the achievable quality of service metric (QoS) for a real-time analytics service to the server energy cost of offering the service. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.
Resumo:
We present a rigorous methodology and new metrics for fair comparison of server and microserver platforms. Deploying our methodology and metrics, we compare a microserver with ARM cores against two servers with ×86 cores running the same real-time financial analytics workload. We define workload-specific but platform-independent performance metrics for platform comparison, targeting both datacenter operators and end users. Our methodology establishes that a server based on the Xeon Phi co-processor delivers the highest performance and energy efficiency. However, by scaling out energy-efficient microservers, we achieve competitive or better energy efficiency than a power-equivalent server with two Sandy Bridge sockets, despite the microserver's slower cores. Using a new iso-QoS metric, we find that the ARM microserver scales enough to meet market throughput demand, that is, a 100% QoS in terms of timely option pricing, with as little as 55% of the energy consumed by the Sandy Bridge server.
Resumo:
Pre-processing (PP) of received symbol vector and channel matrices is an essential pre-requisite operation for Sphere Decoder (SD)-based detection of Multiple-Input Multiple-Output (MIMO) wireless systems. PP is a highly complex operation, but relative to the total SD workload it represents a relatively small fraction of the overall computational cost of detecting an OFDM MIMO frame in standards such as 802.11n. Despite this, real-time PP architectures are highly inefficient, dominating the resource cost of real-time SD architectures. This paper resolves this issue. By reorganising the ordering and QR decomposition sub operations of PP, we describe a Field Programmable Gate Array (FPGA)-based PP architecture for the Fixed Complexity Sphere Decoder (FSD) applied to 4 × 4 802.11n MIMO which reduces resource cost by 50% as compared to state-of-the-art solutions whilst maintaining real-time performance.
Resumo:
This paper investigates the potential for using the windowed variance of the received signal strength to select from a set of predetermined channel models for a wireless ranging or localization system. An 868 MHz based measurement system was used to characterize the received signal strength (RSS) of the off-body link formed between two wireless nodes attached to either side of a human thorax and six base stations situated in the local surroundings.
Resumo:
Li-ion batteries have been widely used in the EVs, and the battery thermal management is a key but challenging part of the battery management system. For EV batteries, only the battery surface temperature can be measured in real-time. However, it is the battery internal temperature that directly affects the battery performance, and large temperature difference may exist between surface and internal temperatures, especially in high power demand applications. In this paper, an online battery internal temperature estimation method is proposed based on a novel simplified thermoelectric model. The battery thermal behaviour is first described by a simplified thermal model, and battery electrical behaviour by an electric model. Then, these two models are interrelated to capture the interactions between battery thermal and electrical behaviours, thus offer a comprehensive description of the battery behaviour that is useful for battery management. Finally, based on the developed model, the battery internal temperature is estimated using an extended Kalman filter. The experimental results confirm the efficacy of the proposed method, and it can be used for online internal temperature estimation which is a key indicator for better real-time battery thermal management.
Resumo:
We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.
Resumo:
In the presence of a (time-dependent) macroscopic electric field the electron dynamics of dielectrics cannot be described by the time-dependent density only. We present a real-time formalism that has the density and the macroscopic polarization P as key quantities. We show that a simple local function of P already captures long-range correlation in linear and nonlinear optical response functions. Specifically, after detailing the numerical implementation, we examine the optical absorption, the second- and third-harmonic generation of bulk Si, GaAs, AlAs and CdTe at different level of approximation. We highlight links with ultranonlocal exchange-correlation functional approximations proposed within linear response time-dependent density functional theory framework.
Resumo:
This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.