956 resultados para quadratic polynomial
Resumo:
This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Anisotropic gaussian beams are obtained as exact solutions to the parabolic wave equation. These beams have a quadratic phase front whose principal radii of curvature are non-degenerate everywhere. It is shown that, for the lowest order beams, there exists a plane normal to the beam axis where the intensity distribution is rotationally symmetric about the beam axis. A possible application of these beams as normal modes of laser cavities with astigmatic mirrors is noted.
Resumo:
The paper deals with the basic problem of adjusting a matrix gain in a discrete-time linear multivariable system. The object is to obtain a global convergence criterion, i.e. conditions under which a specified error signal asymptotically approaches zero and other signals in the system remain bounded for arbitrary initial conditions and for any bounded input to the system. It is shown that for a class of up-dating algorithms for the adjustable gain matrix, global convergence is crucially dependent on a transfer matrix G(z) which has a simple block diagram interpretation. When w(z)G(z) is strictly discrete positive real for a scalar w(z) such that w-1(z) is strictly proper with poles and zeros within the unit circle, an augmented error scheme is suggested and is proved to result in global convergence. The solution avoids feeding back a quadratic term as recommended in other schemes for single-input single-output systems.
Resumo:
Space-fractional operators have been used with success in a variety of practical applications to describe transport processes in media characterised by spatial connectivity properties and high structural heterogeneity altering the classical laws of diffusion. This study provides a systematic investigation of the spatio-temporal effects of a space-fractional model in cardiac electrophysiology. We consider a simplified model of electrical pulse propagation through cardiac tissue, namely the monodomain formulation of the Beeler-Reuter cell model on insulated tissue fibres, and obtain a space-fractional modification of the model by using the spectral definition of the one-dimensional continuous fractional Laplacian. The spectral decomposition of the fractional operator allows us to develop an efficient numerical method for the space-fractional problem. Particular attention is paid to the role played by the fractional operator in determining the solution behaviour and to the identification of crucial differences between the non-fractional and the fractional cases. We find a positive linear dependence of the depolarization peak height and a power law decay of notch and dome peak amplitudes for decreasing orders of the fractional operator. Furthermore, we establish a quadratic relationship in conduction velocity, and quantify the increasingly wider action potential foot and more pronounced dispersion of action potential duration, as the fractional order is decreased. A discussion of the physiological interpretation of the presented findings is made.
Resumo:
Sets of multivalued dependencies (MVDs) having conflict-free covers are important to the theory and design of relational databases [2,12,15,16]. Their desirable properties motivate the problem of testing a set M of MVDs for the existence of a confiict-free cover. In [8] Goodman and Tay have proposed an approach based on the possible equivalence of M to a single (acyclic) join dependency (JD). We remark that their characterization does not lend an insight into the nature of such sets of MVDs. Here, we use notions that are intrinsic to MVDs to develop a new characterization. Our approach proceeds in two stages. In the first stage, we use the notion of “split-free” sets of MVDs and obtain a characterization of sets M of MVDs having split-free covers. In the second, we use the notion of “intersection” of MVDs to arrive at a necessary and sufficient condition for a split-free set of MVDs to be conflict-free. Based on our characterizations, we also give polynomial-time algorithms for testing whether M has split-free and conflict-free covers. The highlight of our approach is the clear insight it provides into the nature of sets of MVDs having conflict-free covers. Less emphasis is given in this paper to the actual efficiency of the algorthms. Finally, as a bonus, we derive a desirable property of split-free sets of MVDs,thereby showing that they are interesting in their own right.
Resumo:
The relationship between the parameters in a description based on a mesoscale free energy functional for the concentration field and the macroscopic properties, such as the bending and compression moduli and the permeation constant, are examined for an asymmetric lamellar phase where the mass fractions of the hydrophobic and hydrophilic parts are not equal. The difference in the mass fractions is incorporated using a cubic term in the free energy functional, in addition to the usual quadratic and quartic terms in the Landau–Ginsburg formulation. The relationship between the coefficient of the cubic term and the difference in the mass fractions of the hydrophilic and hydrophobic parts is obtained. For a lamellar phase, it is important to ensure that the surface tension is zero due to symmetry considerations. The relationship between the parameters in the free energy functional for zero surface tension is derived. When the interface between the hydrophilic and hydrophobic parts is diffuse, it is found that the bending and compression moduli, scaled by the parameters in the free energy functional, do increase as the asymmetry in the bilayer increases. When the interface between the hydrophilic and hydrophobic parts is sharp, the scaled bending and compression moduli show no dependence on the asymmetry in the bilayer. The ratio of the permeation constant in between the water and bilayer in a molecular description and the Onsager coefficient in the mesoscale description is O(1) for both sharp and diffuse interfaces and it increases as the difference in the mass fractions is increased.
Resumo:
Premature birth and associated small body size are known to affect health over the life course. Moreover, compelling evidence suggests that birth size throughout its whole range of variation is inversely associated with risk for cardiovascular disease and type 2 diabetes in subsequent life. To explain these findings, the Developmental Origins of Health and Disease (DOHaD) model has been introduced. Within this framework, restricted physical growth is, to a large extent, considered either a product of harmful environmental influences, such as suboptimal nutrition and alterations in the foetal hormonal milieu, or an adaptive reaction to the environment. Whether inverse associations exist between body size at birth and psychological vulnerability factors for mental disorders is poorly known. Thus, the aim of this thesis was to study in three large prospective cohorts whether prenatal and postnatal physical growth, across the whole range of variation, is associated with subsequent temperament/personality traits and psychological symptoms that are considered vulnerability factors for mental disorders. Weight and length at birth in full term infants showed quadratic associations with the temperamental trait of harm avoidance (Study I). The highest scores were characteristic of the smallest individuals, followed by the heaviest/longest. Linear associations between birth size and psychological outcomes were found such that lower weight and thinness at birth predicted more pronounced trait anxiety in late adulthood (Study II); lower birth weight, placental size, and head circumference at 12 months predicted a more pronounced positive schitzotypal trait in women (Study III); and thinness and smaller head circumference at birth associated with symptoms of attention-deficit hyperactivity disorder (ADHD) in children who were born at term (Study IV). These associations occured across the whole variation in birth size and after adjusting for several confounders. With respect to growth after birth, individuals with high trait anxiety scores in late adulthood were lighter in weight and thinner in infancy, and gained weight more rapidly between 7 and 11 years of age, but weighed less and were shorter in late adulthood in relation to weight and height measured at 11 years of age (Study II). These results suggest that a suboptimal prenatal environment reflected in smaller birth size may affect a variety of psychological vulnerability factors for mental disorders, such as the temperamental trait of harm avoidance, trait anxiety, schizotypal traits, and symptoms of ADHD. The smaller the birth size across the whole range of variation, the more pronounced were these psychological vulnerability factors. Moreover, some of these outcomes, such as trait anxiety, were also predicted by patterns of growth after birth. The findings are concordant with the DOHaD model, and emphasise the importance of prenatal factors in the aetiology of not only mental disorders but also their psychological vulnerability factors.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Digital signatures are often used by trusted authorities to make unique bindings between a subject and a digital object; for example, certificate authorities certify a public key belongs to a domain name, and time-stamping authorities certify that a certain piece of information existed at a certain time. Traditional digital signature schemes however impose no uniqueness conditions, so a trusted authority could make multiple certifications for the same subject but different objects, be it intentionally, by accident, or following a (legal or illegal) coercion. We propose the notion of a double-authentication-preventing signature, in which a value to be signed is split into two parts: a subject and a message. If a signer ever signs two different messages for the same subject, enough information is revealed to allow anyone to compute valid signatures on behalf of the signer. This double-signature forgeability property discourages signers from misbehaving—a form of self-enforcement—and would give binding authorities like CAs some cryptographic arguments to resist legal coercion. We give a generic construction using a new type of trapdoor functions with extractability properties, which we show can be instantiated using the group of sign-agnostic quadratic residues modulo a Blum integer; we show an additional application of these new extractable trapdoor functions to standard digital signatures.
Resumo:
The one-loop quadratically divergent mass corrections in globally supersymmetric gauge theories with spontaneously broken abelian and non-abelian gauge symmetry are studied. Quadratically divergent mass corrections are found to persist in an abelian model with an ABJ anomaly. However, additional supermultiplets necessary to cancel the ABJ anomaly, turn out to be sufficient to eliminate the quadratic divergences as well, rendering the theory natural. Quadratic divergences are shown to vanish also in the case of an anomaly free model with spontaneously broken non-abelian gauge symmetry.
Resumo:
In this paper, we develop a cipher system based on finite field transforms. In this system, blocks of the input character-string are enciphered using congruence or modular transformations with respect to either primes or irreducible polynomials over a finite field. The polynomial system is shown to be clearly superior to the prime system for conventional cryptographic work.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter λ which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when λ is small, whereas the effect of the dissipation parameter is more pronounced when λ is comparatively large.
Resumo:
Identification of the optimum generation schedule by various methods of coordinating incremental generation costs and incremental transmission losses has been described previously in the literature. This paper presents an analytical approach which reduces the time-consuming iterative procedure into a mere positive-root determination of a third-order polynomial in λ. This approach includes the effect of transmission losses and is suitable for systems with any number of plants. The validity and effectiveness of this method are demonstrated by analysing a sample system.
Resumo:
The maximum independent set problem is NP-complete even when restricted to planar graphs, cubic planar graphs or triangle free graphs. The problem of finding an absolute approximation still remains NP-complete. Various polynomial time approximation algorithms, that guarantee a fixed worst case ratio between the independent set size obtained to the maximum independent set size, in planar graphs have been proposed. We present in this paper a simple and efficient, O(|V|) algorithm that guarantees a ratio 1/2, for planar triangle free graphs. The algorithm differs completely from other approaches, in that, it collects groups of independent vertices at a time. Certain bounds we obtain in this paper relate to some interesting questions in the theory of extremal graphs.
Resumo:
In a globally supersymmetric gauge theory with two distinct mass scales, the possible limitation on the gauge hierarchy due to the structure of the loop-corrected Higgs potential is shown to be absent. Also it has been demonstrated that the supersymmetry forces the large corrections to the two-point Greens functions of the light fields from the quadratic divergences and the logarithmic divergences with large coefficients to be zeroseparately. This would, therefore, allow a gauge hierarchy as large as desired.