979 resultados para pyrolysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical and petrological investigations were carried out on Cenomanian/Turonian black shales from three sample sites in the Tarfaya Basin (SW Morocco) to characterize the sedimentary organic matter. These black shales have a variable bulk and molecular geochemical composition reflecting changes in the quantity and quality of the organic matter. High TOC contents (up to 18wt%) and hydrogen indices between 400 and 800 (mgHC/gTOC) indicate hydrogen-rich organic matter (Type I-II kerogen) which qualifies these laminated black shale sequences as excellent oil-prone source rocks. Low Tmax values obtained from Rock-Eval pyrolysis (404-425 MC) confirm an immature to early mature level of thermal maturation. Organic petrological studies indicate that the kerogen is almost entirely composed of bituminite particles. These unstructured organic aggregates were most probably formed by intensive restructuring of labile biopolymers (lipids and/or carbohydrates), with the incorporation of sulphur into the kerogen during early diagenesis. Total lipid analyses performed after desulphurization of the total extract shows that the biomarkers mostly comprise short-chain n-alkanes (C16-C22) and long-chain (C25-C35) n-alkanes with no obvious odd-over-even predominance, together with steranes, hopanoids and acyclic isoprenoids. The presence of isorenieratane derivatives originating from green sulphur bacteria indicates that dissolved sulphide had reached the photic zone at shallow water depths (~100m) during times of deposition. These conditions probably favoured intensive sulphurization of the organic matter. Flash pyrolysis GC-MS analysis of the kerogen indicates the aliphatic nature of the bulk organic carbon. The vast majority of pyrolysis products are sulphur-containing components such as alkylthiophenes, alkenylthiophenes and alkybenzothiophenes. Abundant sulphurization of the Tarfaya Basin kerogen resulted from excess sulphide and metabolizable organic matter combined with a limited availability of iron during early diagenesis. The observed variability in the intensity of OM sulphurization may be attributed to sea level-driven fluctuations in the palaeoenvironment during sedimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 159, four sites (Sites 959-962) were drilled along a depth transect on the Côte d'Ivoire/Ghana Transform Margin. In this study, the Pliocene-Pleistocene history of carbonate and organic carbon accumulation at Hole 959C is reconstructed for the eastern equatorial Atlantic off the Ivory Coast/Ghana based on bulk carbonate, sand fraction, organic carbon, and other organic geochemical records (d13Corg, marine organic matter percentages derived from organic petrology, hydrogen index, C/N). Pliocene-Pleistocene sedimentation off the Ivory Coast/Ghana was strongly affected by low mean sedimentation rates, which are attributed to persistently enhanced bottom-water velocities related to the steep topography of the transform margin. Sand fraction and bulk carbonate records reveal typical glacial/interglacial cycles, preserved, however, with low time resolution. Intermediate carbonate accumulation rates observed throughout the Pliocene-Pleistocene suggest intense winnowing and sediment redistribution superimposed by terrigenous dilution. 'Atlantic-type' sand and carbonate cycles, consistent with records from pelagic areas of the eastern equatorial Atlantic, are encountered at Hole 959C prior to about 0.9 Ma. Total organic carbon (TOC) records are frequently inversely correlated to carbonate contents, indicating mainly productivity-driven carbonate dissolution related to changes in paleoproductivity. During Stages 22-24, 20, 16, 12, 8, and 4, sand and carbonate records reveal a 'Pacific-type' pattern, showing elevated contents during glacials commonly in conjunction with enhanced TOC records. Formation of 'Pacific-type' patterns off the Ivory Coast/Ghana is attributed to drastically increased bottom-water intensities along the transform margin in accordance with results reported from the Walvis Ridge area. Short-term glacial/interglacial changes in paleoproductivity off the Ivory Coast/Ghana are to some extend recognizable during glacials prior to 1.7 Ma and interglacial Stages 21, 19, 13, 9, and 1. Enhanced coastal upwelling during interglacials is attributed to local paleoclimatic and oceanographic conditions off the Ivory Coast/Ghana. Quantitative estimates of marine organic carbon based on organic petrologic and d13Corg records reveal an offset in concentration ranging from 15% to 60%. Highest variabilities of both records are recorded since ~0.9 Ma. Discrepancies between the isotopic and microscopic records are attributed to an admixture of C4 plant debris approaching the eastern equatorial Atlantic via atmospheric dust. Terrestrial organic material likely originated from the grass-savannah-covered Sahel zone in central Africa. Estimated C4 plant concentrations and accumulation rates range from 10% to 37% and from almost zero to 0.006 g/cm**2/k.y., respectively. The strongest eolian supply to the northern Gulf of Guinea is indicated between 1.9 and 1.68 Ma and during glacial isotopic Stages 22-24, 20, 14, and 12. The presence of grass-type plant debris is further supported by organic petrologic studies, which reveal well-preserved cell tissues of vascular plants or tube-shaped, elongated terrestrial macerals showing different levels of oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical records of the last 940 kyr are presented for equatorial Atlantic Ocean Drilling Program (ODP) sites 663 and 664 and discussed with regard to the development of ocean productivity and African paleoclimate. Proportions of marine and terrigenous organic matter (OM) are estimated from elemental, pyrolytic, isotopic, and petrologic data. Spectral analyses reveal a strong power at the eccentricity and obliquity band, indicating a close response of tropical organic sedimentation to the climatic evolution at high latitudes. The orbital covariance of organic carbon with biogenous opal and terrigenous records favor that glacially enhanced dust supply and surface water mixing were primary controls for deposition of organic carbon. Wind-borne supply of terrigenous OM contributes 26 to 55% and 0 to 39% to the bulk OM based on microscopic and isotopic records, respectively. Admixture of C4 plant matter was approximated to contribute up to 16% to the bulk organic fraction during peak glacial conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) was determined in pore water extracted from pelagic and hemipelagic sediments recovered during Leg 113. DOC concentration varied between 1.82 and 13.6 mg C/L which is one to two orders of magnitude less than previously reported for hemipelagic sediments. It is argued that this difference is related to differences in the intensity of degradation of organic matter. As a first approximation it is found that in reducing sediments, the level of DOC is proportional to the intensity of sulfate reduction. It is suggested that DOC is formed by different mechanisms in oxic and reducing environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic petrologic and geochemical analyses were performed on modern and Quaternary organic carbon-poor deep sea sediments from the Equatorial Atlantic. The study area covers depositional settings from the West African margin (ODP Site 959) through the Equatorial Divergence (ODP Site 663) to the pelagic Equatorial Atlantic. Response of organic matter (OM) deposition to Quaternary climatic cycles is discussed for ODP Sites 959 and 663. The results are finally compared to a concept established for fossil deep sea environments [Littke and Sachsenhofer, 1994 doi:10.1021/ef00048a041]. Organic geochemical results obtained from Equatorial Atlantic deep sea deposits provide new aspects on the distribution of sedimentary OM in response to continental distance, atmospheric and oceanographic circulation, and depositional processes controlling sedimentation under modern and past glacial-interglacial conditions. The inventory of macerals in deep sea deposits is limited due to mechanical breakdown of particles, degree of oxidation, and selective remineralization of labile (mostly marine) OM. Nevertheless, organic petrology has a great potential for paleoenvironmental studies, especially as a proxy to assess quantitative information on the relative abundance of marine vs. terrigenous OM. Discrepancies between quantitative data obtained from microscopic and isotopic (delta13Corg) analyses were observed depending on the stratigraphic level and depositional setting. Strongest offset between both records was found close to the continent and during glacial periods, suggesting a coupling with wind-born terrigenous OM from central Africa. Since African dust source areas are covered by C4 grass plants, supply of isotopically heavy OM is assumed to have caused the difference between microscopic and isotopic records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventy-one samples from nine sites were analyzed for total organic carbon (TOC). Fifty-six samples, containing 0.2% or more TOC, were evaluated by Rock-Eval to assess the nature of their kerogen and its petroleum source potential. Visual kerogen studies were carried out. Petroleum potential was encountered only in Valanginian calcareous claystones at Hole 692B close to the margin of Dronning Maud Land. A section of 44.7 m was penetrated. The unit possesses a revised mean TOC of 9.8% and petroleum potential of 43.2 kg/Mg, relatively high values in comparison to other Cretaceous anoxic oceanic sections and the totality of petroleum source rocks. At Sites 689 and 690, extremely low TOC levels, mean 0.07%, preclude kerogen analysis. Kerogens in Eocene to Pliocene sediments of the central and western Weddell Sea (Sites 694, 695, 696, and 697) are similar everywhere, largely comprising brown to black, granular, amorphous material of high rank, and generally possessing several reflectance populations of vitrinite particles. The latter are interpreted as indicative of the recycling of sediments of a variety of levels of thermal maturity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Leg 104 organic geochemistry program consisted of monitoring (a) hydrocarbon gases, (b) organic and inorganic carbon, and (c) parameters resulting from Rock-Eval pyrolysis at three sites on the Voring Plateau. The results amplify some of those obtained earlier on Deep Sea Drilling Project (DSDP) Leg 38. In a regional sense there is an inverse correlation between amounts of hydrocarbon gas and organic carbon. For example, significant concentrations of methane are present only at Site 644 in the inner part of the plateau where organic carbon contents are always less than 1%; in contrast, at Site 642 on the outer plateau, methane concentrations are very low (ppm range) whereas amounts of organic carbon approach 2%. Only at Site 644 are the environmental conditions such that methanogenesis is an active diagenetic process. Because of the importance of routine gas analyses to the Ocean Drilling Program (ODP), a procedure was devised to improve the use of Vacutainers for collection of gas samples. Comparison of methods for determining organic carbon showed that at Sites 643 and 644 Rock-Eval TOC could be used as a measure of organic carbon, but not at Site 642. Although no liquid or solid hydrocarbons were encountered at any of the sites, a catalog of potential organic geochemical contaminants was developed in anticipation of such a discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithological, geochemical, stratigraphic, and paleoecological features of carbonaceous sediments in the Late Jurassic Volgian Basin of the East European Platform (Kostroma Region) are considered. The shale-bearing sequence studied is characterized by greater sedimentological completeness as compared with its stratotype sections in the Middle Volga region (Gorodishche, Kashpir). Stratigraphic position and stratigraphy of the shale-bearing sequence, as well as distribution of biota in different sedimentation settings are specified. It is shown that Volgian sediments show distinct cyclic structure. The lower and upper elements of cyclites consist of high-carbonaceous shales and clayey-calcareous sediments, respectively, separated by transitional varieties. Bioturbation structures in different rocks are discussed. Microcomponent composition and pyrolytic parameters of organic matter, as well as distribution of chemical elements in lithologically variable sediments are analyzed. Possible reasons responsible for appearance of cyclicity and accumulation of organic-rich sediments are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments from the Gulf of California contain sufficient amounts of thermally reactive organic matter to be considered fair-to-good potential petroleum source rocks. While sediments deposited within the present oxygen-minimum zone have the greatest amounts of organic matter, those deposited below the oxygen-minimum contain sufficient organic matter to be considered potential source rocks. The organic matter in the sediment is almost exclusively marine, Type II kerogen. Different techniques of determining kerogen composition produce generally compatible answers, although pyrolysis gives somewhat misleading results. Elemental analysis of the kerogen and vitrinite reflectance measurements indicate that the organic matter is not buried to sufficiently great depth for significant petroleum generation, despite the high temperature gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleomagnetic and rock-magnetic investigations of basalts from Hole 834B in the Lau backarc basin and of sediments from Holes 841A and 841B at the Tonga Ridge are reported. Three groups of blocking temperatures in the basalts suggest the presence of at least three magnetic phases: pure magnetite, a Ti-poor titanomagnetite, and a Ti-rich phase. The drill-string-induced remanence in the basalts is typically between three and six times the original normal remanent magnetization intensity, but it is mostly removed by alternating-field (AF) cleaning in 5 mT. Volume susceptibility values range from 0.04 * 10**-3 to 4 * 10**-3 cgs. The modified Q-ratio J5/sus ranges from 0.5 to 10. The drill-string-induced remanence behaves different in the two sediment cores from Holes 841A and 841B, which may be the result of differences in the sediment or caused by the different drilling equipment used. The AF-cleaned inclinations of the sediment in Holes 841A and 841B suggest a slight flattening with increasing depth (up to 6° under a load of 400 m of sediment) to be present. This flattening is likely to be caused by the differential rotation of detrital particles under compaction during diagenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments of the Barbados Ridge complex, cored on DSDP Leg 78A, contain low concentrations of acid-insoluble carbon (0.05-0.25%) and nitrogen (C/N 1.5-5) and dispersed C1-C6 hydrocarbons (100-800 ppb). The concentrations of organic carbon and 13C in organic carbon decrease with depth, whereas the concentration of dispersed hydrocarbons increases slightly with depth. These trends may reflect the slow oxidation of organic matter, with selective removal of 13C and slow conversion of the residual organic matter to hydrocarbons. Very minor indications of nitrogen gas were observed at about 250 meters sub-bottom at two of the drilling sites. Basement basalts have calcite veins with d13C values in the range of 2.0 to 3.2 per mil and d18O-SMOW values ranging from 28.5 to +30.6 per mil. Interstitial waters have d18O-SMOW of 0.2 to -3.5 per mil and dD-SMOW of -2 to -15 per mil. The oxygen isotopic composition of the calcite veins in the basement basalts gives estimated equilibrium fractionation temperatures in the range of 11 to 24°C, assuming precipitation from water with d18O-SMOW in the range of +0.1 to -1.0 per mil. This suggests that basalt alteration and precipitation of vein calcite occurred in contact either with warmer Campanian seawater or, later, with pore water, after burial to depths of 200- 300 meters. Pore waters from all three sites are depleted in deuterium and 18O, and dissolved sulfate is enriched in 34S at Sites 541 and 542, but not at Site 543.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments from the Baja California Continental Margin Transect - Sites 474 and 476 - showed small amounts of C2-C8 hydrocarbons and functionalized compounds (alkenes) typical of organic-rich, Recent, cold (<30°C) marine sediments. In contrast, some samples from Sites 477, 478, 479, and Hole 481A in the Guaymas Basin, an active spreading center, showed the characteristics of thermally generated hydrocarbons. These include an increase (sometimes exponential) in amount and diversity of C2-C8 hydrocarbons and a decrease in alkenes in more thermally mature sediments. The results indicate that the injection of basaltic sills has minimal effect on C2-C8 hydrocarbon generation except in the immediate vicinity of the sill. The absence of light hydrocarbons close to the hottest sills suggests that the compounds distill away as they are formed in these areas of very active hydrothermal circulation. A sample of young sediment exposed to very high temperatures (>300°C) from deeper thermal sources at the hottest site, 477, showed a very limited hydrocarbon distribution, including primarily ethane, benzene, and toluene, together with smaller amounts of propane and butane.