588 resultados para polystyrene
Resumo:
In this elaborate, a textile-based Organic Electrochemical Transistor (OECT) was first developed for the determination of uric acid in wound exudate based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which was then coupled to an electrochemically gated textile transistor consisting of a composite of iridium oxide particles and PEDOT:PSS for pH monitoring in wound exudate. In that way a sensor for multiparameter monitoring of wound health status was assembled, including the ability to differentiate between a wet-dry status of the smart bandage by implementing impedance measurements exploiting the OECT architecture. Afterwards, for both wound management as well as generic health status tracking applications, a glass-based calcium sensor was developed employing polymeric ion-selective membranes on a novel architecture inspired by the Wrighton OECT configuration, which was later converted to a Proof-of-Concept textile prototype for wearable applications. Lastly, in collaboration with the King Abdullah University of Science and Technology (KAUST, Thuwal, Saudi Arabia) under the supervision of Prof. Sahika Inal, different types of ion-selective thiophene-based monomers were used to develop ion-selective conductive polymers to detect sodium ion by different methods, involving standard potentiometry and OECT-based approaches. The textile OECTs for uric acid detection performances were optimized by investigating the geometry effect on the instrumental response and the properties of the different textile materials involved in their production, with a special focus on the final application that implies the operativity in flow conditions to simulate the wound environment. The same testing route was followed for the multiparameter sensor and the calcium sensor prototype, with a particular care towards the ion-selective membrane composition and electrode conditioning protocol optimization. The sodium-selective polymer electrosynthesis was optimized in non-aqueous environments and was characterized by means of potentiostatic and potentiodynamic techniques coupled with Quartz Crystal Microbalance and spectrophotometric measurements.
Resumo:
The increase of railways near the urban areas is a significant cause of discomfort for inhabitants due to train-induced vibration and noise. Vibration characteristics can vary widely according to the train type: for high-speed trains, if train speed becomes comparable to the ground wave speed, the vibration level becomes significant; for freight trains, due to their heavier weight and lower speed, the vibration amplitudes are greater and propagate at a more considerable distance from the track; for urban tramways, although the vibration amplitude is relatively low, they can have a negative structural effect on the closest buildings [51]. Therefore, to dampen the vibration level, it is possible to carry out some interventions both on the track and the transmission path. This thesis aims to propose and numerically investigate a novel method to dampen the train-induced vibrations along the transmission path. The method is called "resonant filled-trench (RFT)" and consists of a combination of expanded polystyrene (EPS) geofoam to stabilize the trench wall against the collapse and drowned cylindrical embedded inclusions inside the geofoam, which act as a resonator, reflector, and attenuator. By means of finite element simulations, we show that up to 50% higher attenuation than the open trench is achievable after overcoming the resonance frequency of the inclusion, i.e., 35Hz, which covers the frequency contents of the train-induced vibration. Moreover, depending on the filling material used for the inclusions, trench depth can be reduced up to 17% compared to the open trench showing the same screening performance as the open trench. Also, an RFT with DS inclusion installed in dense sand soil shows a high hindrance performance (i.e., IL≥6dB) when the trench depth is larger than 0.5λ_R while it is 0.6λ_R for the open trench.
Resumo:
Microplastics (MPs) are highly debated emerging contaminants that are widespread on Earth. Nowadays, assessment of the risk that MPs pose on human health and environment were not developed yet, and standardized analytical methods for their quantification in complex matrices do not exist. Therefore, the formulation of standards which regulating MPs emission in the environment is not possible. The purpose of this study was to develop and apply a method for the analysis of MPs in sewage sludges and water from a wastewater treatment plant (WWTP), due to the relevance of those matrices as important pathway for MPs to enter the environment. Seven polymers were selected, because of their relevance on market production and their frequency of occurrence in such plants: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyvinyl chloride (PVC), and nylon 6 (PA-6). In the study, a pre-treatment procedure was optimised using Fenton’s reagent and analyses carried out by combining thermochemolysis with Py-GC-MS after sample filtration on quartz (0.3 µm). Polymer quantification was performed with solid polymer mixture in silica and good correlations were obtained with internal calibration. As main results, Fenton's reagent negatively affected the recovery of some polymers (PP, PE, PS, PA-6) and a possible matrix interference was noticed, especially for PET and PVC. The WWTP allowed a good abatement of PS, PE, PP and PVC (on average 90 %) and comparable results were hypothesised for the other polymers. Polymer concentrations is sewage sludges ranged between < 2 μg/gdry and 3.5 mg/ gdry, for PC and PVC, respectively. Possible overestimations for PET and PVC, due to matrix interreferences, were taken into account and discussed.