998 resultados para poly(amidoamine)
Resumo:
The liquid crystalline properties of a mesogenic poly(1-alkyne) and the corresponding monomer were studied using transmission electron microscopy, X-ray diffraction, polarizing optical microscopy and differential scanning calorimetry. The monomer exhibits a monotropic smectic A phase and a metastable crystalline phase. The rigid polymer backbones do not prevent the mesogenic moieties from packing into smectic A and B phases in the temperature ranges 127.6 - 74.1degreesC and 74.1degreesC - room temperature, respectively, on cooling from the isotropic melt.
Resumo:
A series of branched poly(ethyleneimine) (PEI) derived polymers with different lengths of n-alkyl side chains, denoted as PEI(n)Cs (n = 12, 14, 16, 18, 20, number of carbon atoms in alkyl side group), have been prepared by a N-alkylation method, and systematically characterized by differential scanning calorimertry (DSC) and wide-angle X-ray diffraction (WARD) as well as Fourier transform infrared spectroscopy (FTIR). The side chains grafted on these comblike polymers are long enough to form crystalline phase composed of paraffin-like crystallites. The crystallization of the side chains forces the branched poly(ethyleneimine) molecules to pack into layered structure, between which the crystallites are located. The melting temperatures of the side chain crystallites increase from -12.36 to +51.49 degreesC with increasing the length of the side chains from n. = 12 to n = 20, which are a little bit lower than the corresponding pristine n-alkanes. PEI18C was taken as an example in this work for the investigation of phase transition and conformational variation of the side chains with temperature changing.
Resumo:
A series of optically active poly(ester imide)s (PEsI's) has been synthesized by the polycondensation reactions of new axially asymmetric dianhydrides, that is, (R)-2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride and (S)-2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride, and various diamines with aromatic, semiaromatic, and aliphatic structures. The polymers have inherent viscosities of 0.45-0.70 dL/g, very good solubility in common organic solvents, glass-transition temperatures of 124-290 degreesC, and good thermal stability. Wide-angle X-ray crystallography of these polymers shows no crystal diffraction. In comparison with model compounds, an enhanced optical rotatory power has been observed for the repeat unit of optically active PEsI's based on aromatic diamines, and it has been attributed to a collaborative asymmetric perturbation of chiral 1,1'-binaphthyls along the rigid backbones.
Resumo:
The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.
Resumo:
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone.
Microwave-assisted synthesis of high-molecular-weight poly(ether imide)s by phase-transfer catalysis
Resumo:
A facile and rapid polycondensation reaction of disodium bisphenol A with bis(chlorophthalimide)s was preformed with a domestic microwave oven in o-dichlorobenzene by phase-transfer catalysis. The polymerization reactions, in comparison with conventional heating polycondensation, proceeded rapidly and were completed within 25 min. The polymerizations gave the corresponding poly(ether imide)s with inherent viscosities of 0.55-0.92 dL g(-1). The effects of various factors on the polymerization, such as the amount of the catalyst, the reaction time, and the microwave power were studied. The properties of the polymers were briefly characterized.
Resumo:
The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.
Resumo:
Nanocomposites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and multi-walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer-coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen.
Resumo:
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was irradiated by Co-60 gamma-rays (doses of 50, 100 and 200kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one-step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight-loss step change. The onset degradation temperature (T-o) and the temperature of maximum weight-loss rate (T-p) of control and irradiated PHBV were in line with the heating rate (degreesC min(-1)). T-o and T-p of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that Co-60 gamma-radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (T-m) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness.
Resumo:
A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.
Resumo:
The first and second generation carbosilane dendrimers with silicon hydride terminated were synthesized, and then reacted with bis(imino)pyridyl containing allyl [4-CH2==CHCH2-2,6-(Pr2C6H3N)-Pr-i==CMe(C5H3N)MeC==N(2,6-'Pr2C6H3)], in the presence of H2PtCl6 as a hydrosilylation catalyst, to afford the first and second generation carbosilane supported ligands. Complexation reactions with FeCl(2)(.)4H(2)O give rise to iron-containing carbosilane dendrimers with FeCl2 moieties bound on the periphery. The metallodendrimers were used as catalyst precursors, activated with modified methylaluminoxane, for the polymerization of ethylene. In the case of low Al/Fe molar ratio, the metallodendrimers display much higher catalytic activity towards ethylene polymerization and produce much higher molecule weight polyethylenes than the corresponding single-nuclear complex under the same conditions.
Resumo:
A novel AB(3)-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
Resumo:
A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.
Resumo:
The core-shell structured grafted copolymer particles of polybutadiene grafted polymethyl methacrylate (PB-g-PMMA, MB) were prepared by emulsion polymerization. The MB particles were used to modify poly (vinyl chloride) (PVC) by melt blending. The mechanical properties of the PVC blends were investigated. The micro-morphology of the PVC blends was observed by scanning electron microscopy (SEM). The results indicated that the samples with the best impact strength could be obtained when the core-shell weight ratio of PB to PMMA is lower than 93:7, the mechanical properties correlated well with SEM morphologies, the addition of modifier with the ratio core to shell of 93:7 could reduce the domain size of the dispersed phase. Furthermore, the compatibility and properties of the blends were greatly enhanced and improved. The modifier particles could be well dispersed in the PVC matrix.
Resumo:
A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxi- dase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 mumol l(-1), and the linear range was from 10.0 mumol l(-1) to 7.0 mmol l(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the Studied biosensor exhibited good current repeatability and good fabrication reproducibility.