959 resultados para photosynthetic CO2 affinity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corticotropin-releasing factor (CRF) has been shown to have a central role in physiological adaptation to stress. It is recognized for stimulating the release of adrenocorticotropin from the anterior pituitary gland, and has more recently been implicated as a regulator of autonomic and immunological responses to stress. Much confusion has surrounded the characterization of CRF receptors, with proteins of varying molecular weights having been identified but never purified and characterized. Recently, two CRF receptors have been cloned from brain and pituitary gland, but evidence from in-situ hybridization studies suggests that further CRF receptor types exist. We therefore developed two techniques which enable the isolation of CRF receptors from whole rat brain. The use of a solid-phase CRF analogue affinity column and elution using a competing ligand resulted in the purification of a single protein of 61 kDa. A second technique was devised which allowed the co-isolation of associated signalling proteins and the identification of CRF bound species following purification. CRF was covalently cross-linked to receptors and the complex purified using antibodies specific for the ligand. This enabled the purification of a CRF receptor of approximately 65 kDa and associated alpha and beta gamma G protein subunits. This study demonstrates the successful isolation of CRF receptors which are of different molecular weights to those previously observed from affinity cross-linking studies or predicted from cloned genes. In addition, we confirm the involvement of G proteins in CRF stimulated cell signalling by demonstrating their association with purified CRF receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims. The response of soil respiration (SR) to elevated CO2 is driven by a number of processes and feedbacks. This work aims to i) detect the effect of elevated CO2 on soil respiration during the second rotation of a short rotation forest, at two levels of N availability; and ii) identify the main drivers behind any changes in soil respiration. Methods. A poplar plantation (POP-EUROFACE) was grown for two rotations of three years under elevated CO2 maintained by a FACE (Free Air CO2 Enrichment) technique. Root biomass, litter production and soil respiration were followed for two consecutive years after coppice. Results. In the plantation, the stimulation of fine root and litter production under elevated CO2 observed at the beginning of the rotation declined over time. Soil respiration (SR) was continuously stimulated by elevated CO2, with a much larger enhancement during the growing (up to 111 %) than in the dormant season (40 %). The SR increase at first appeared to be due to the increase in fine root biomass, but at the end of the 2nd rotation was supported by litter decomposition and the availability of labile C. Soil respiration increase under elevated CO2 was not affected by N availability. Conclusions. The stimulation of SR by elevated CO2 was sustained by the decomposition of above and belowground litter and by the greater availability of easily decomposable substrates into the soil. C losses through SR were greater in the last year of the plantation due to a lack of effect of elevated CO2 on C allocation to roots, reducing the potential for C accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• In a free-air CO2 enrichment study (BangorFACE) Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one, two and three species mixtures (n=4). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years, and aboveground growth characteristics measured. • In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was +29, +22 and +16% for A. glutinosa, F. sylvatica, and B. pendula respectively. When the same species were grown in polyculture, the response to CO2 switched to +10, +7 and 0%, for A. glutinosa, B. pendula, and F. sylvatica respectively. • In ambient atmosphere our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 kg m-2 to 18.9 ± 1.0 kg m-2, whereas in an elevated CO2 atmosphere aboveground woody biomass increased from 15.2 ± 0.6 kg m-2 to 20.2 ± 0.6 kg m-2. The overyielding effect of polyculture was smaller (+7%) in elevated CO2 than in an ambient atmosphere (+18%). • Our results show that the aboveground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three years of meteorological data collected at the WLEF-TV tower were used to drive a revised version of the Simple Biosphere (SiB 2.5) Model. Physiological properties and vegetation phenology were specified from satellite imagery. Simulated fluxes of heat, moisture, and carbon were compared to eddy covariance measurements taken onsite as a means of evaluating model performance on diurnal, synoptic, seasonal, and interannual time scales. The model was very successful in simulating variations of latent heat flux when compared to observations, slightly less so in the simulation of sensible heat flux. The model overestimated peak values of sensible heat flux on both monthly and diurnal scales. There was evidence that the differences between observed and simulated fluxes might be linked to wetlands near the WLEF tower, which were not present in the SiB simulation. The model overestimated the magnitude of the net ecosystem exchange of CO2 in both summer and winter. Mid-day maximum assimilation was well represented by the model, but late afternoon simulations showed excessive carbon uptake due to misrepresentation of within-canopy shading in the model. Interannual variability was not well simulated because only a single year of satellite imagery was used to parameterize the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using simulation methods, we studied the adsorption of binary CO2-CH4 mixtures on various CH4 preadsorbed carbonaceous materials (e.g., triply periodic carbon minimal surfaces, slit-shaped carbon micropores, and Harris's virtual porous carbons) at 293 K. Regardless of the different micropore geometry, two-stage mechanism of CH4 displacement from carbon nanospaces by coadsorbed CO2 has been proposed. In the first stage, the coadsorbed CO2 molecules induced the enhancement of CH4 adsorbed amount. In the second stage, the stronger affinity of CO2 to flat/curved graphitic surfaces as well as CO2-CO2 interactions cause the displacement of CH4 molecules from carbonaceous materials. The operating conditions of CO2-induced cleaning of the adsorbed phase from CH4 mixture component strongly depend on the size of the carbon micropores, but, in general, the enhanced adsorption field in narrow carbon ultramicropores facilitates the nonreactive displacement of CH4 by coadsorbed CO2. This is because in narrow carbon ultramicropores the equilibrium CO2/CH4 selectivity (i.e., preferential adsorption toward CO2) increased significantly. The adsorption field in wider micropores (i.e., the overall surface energy) for both CO2 and CH4 is very similar, which decreases the preferential CO2 adsorption. This suppresses the displacement of CH4 by coadsorbed CO2 and assists further adsorption of CH4 from the bulk mixture (i.e., CO2/CH4 mixing in adsorbed phase).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ∼18–20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008) who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM) and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS) and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998), is used in several other models we provide some description of the problem and how it was fixed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Canadian Middle Atmosphere Model (CMAM) has been used to examine the middle atmosphere response to CO2 doubling. The radiative-photochemical response induced by doubling CO2 alone and the response produced by changes in prescribed SSTs are found to be approximately additive, with the former effect dominating throughout the middle atmosphere. The paper discusses the overall response, with emphasis on the effects of SST changes, which allow a tropospheric response to the CO2 forcing. The overall response is a cooling of the middle atmosphere accompanied by significant increases in the ozone and water vapor abundances. The ozone radiative feedback occurs through both an increase in solar heating and a decrease in infrared cooling, with the latter accounting for up to 15% of the total effect. Changes in global mean water vapor cooling are negligible above ~30 hPa. Near the polar summer mesopause, the temperature response is weak and not statistically significant. The main effects of SST changes are a warmer troposphere, a warmer and higher tropopause, cell-like structures of heating and cooling at low and middlelatitudes in the middle atmosphere, warming in the summer mesosphere, water vapor increase throughout the domain, and O3 decrease in the lower tropical stratosphere. No noticeable change in upwardpropagating planetary wave activity in the extratropical winter–spring stratosphere and no significant temperature response in the polar winter–spring stratosphere have been detected. Increased upwelling in the tropical stratosphere has been found to be linked to changed wave driving at low latitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suburban areas continue to grow rapidly and are potentially an important land-use category for anthropogenic carbon-dioxide (CO2) emissions. Here eddy covariance techniques are used to obtain ecosystem-scale measurements of CO2 fluxes (FC) from a suburban area of Baltimore, Maryland, USA (2002–2006). These are among the first multi-year measurements of FC in a suburban area. The study area is characterized by low population density (1500 inhabitants km−2) and abundant vegetation (67.4% vegetation land-cover). FC is correlated with photosynthetic active radiation (PAR), soil temperature, and wind direction. Missing hourly FC is gap-filled using empirical relations between FC, PAR, and soil temperature. Diurnal patterns show net CO2 emissions to the atmosphere during winter and net CO2 uptake by the surface during summer daytime hours (summer daily total is −1.25 g C m−2 d−1). Despite the large amount of vegetation the suburban area is a net CO2 source of 361 g C m−2 y−1 on average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.