605 resultados para permeation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human scent and human remains detection canines are used to locate living or deceased humans under many circumstances. Human scent canines locate individual humans on the basis of their unique scent profile, while human remains detection canines locate the general scent of decomposing human remains. Scent evidence is often collected by law enforcement agencies using a Scent Transfer Unit, a dynamic headspace concentration device. The goals of this research were to evaluate the STU-100 for the collection of human scent samples, and to apply this method to the collection of living and deceased human samples, and to the creation of canine training aids. The airflow rate and collection material used with the STU-100 were evaluated using a novel scent delivery method. Controlled Odor Mimic Permeation Systems were created containing representative standard compounds delivered at known rates, improving the reproducibility of optimization experiments. Flow rates and collection materials were compared. Higher air flow rates usually yielded significantly less total volatile compounds due to compound breakthrough through the collection material. Collection from polymer and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in the trapping and releasing of compounds. The weave of the material also affects compound collection, as those materials with a tighter weave demonstrated enhanced collection efficiencies. Using the optimized method, volatiles were efficiently collected from living and deceased humans. Replicates of the living human samples showed good reproducibility; however, the odor profiles from individuals were not always distinguishable from one another. Analysis of the human remains samples revealed similarity in the type and ratio of compounds. Two types of prototype training aids were developed utilizing combinations of pure compounds as well as volatiles from actual human samples concentrated onto sorbents, which were subsequently used in field tests. The pseudo scent aids had moderate success in field tests, and the Odor pad aids had significant success. This research demonstrates that the STU-100 is a valuable tool for dog handlers and as a field instrument; however, modifications are warranted in order to improve its performance as a method for instrumental detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Florida is the second leading horticulture state in the United States with a total annual industry sale of over $12 Billion. Due to its competitive nature, agricultural plant production represents an extremely intensive practice with large amounts of water and fertilizer usage. Agrochemical and water management are vital for efficient functioning of any agricultural enterprise, and the subsequent nutrient loading from such agricultural practices has been a concern for environmentalists. A thorough understanding of the agrochemical and the soil amendments used in these agricultural systems is of special interest as contamination of soils can cause surface and groundwater pollution leading to ecosystem toxicity. The presence of fragile ecosystems such as the Everglades, Biscayne Bay and Big Cypress near enterprises that use such agricultural systems makes the whole issue even more imminent. Although significant research has been conducted with soils and soil mix, there is no acceptable method for determining the hydraulic properties of mixtures that have been subjected to organic and inorganic soil amendments. Hydro-physical characterization of such mixtures can facilitate the understanding of water retention and permeation characteristics of the commonly used mix which can further allow modeling of soil water interactions. The objective of this study was to characterize some of the locally and commercially available plant growth mixtures for their hydro-physical properties and develop mathematical models to correlate these acquired basic properties to the hydraulic conductivity of the mixture. The objective was also to model the response patterns of soil amendments present in those mixtures to different water and fertilizer use scenarios using the characterized hydro-physical properties with the help of Everglades-Agro-Hydrology Model. The presence of organic amendments helps the mixtures retain more water while the inorganic amendments tend to adsorb more nutrients due to their high surface area. The results of these types of characterization can provide a scientific basis for understanding the non-point source water pollution from horticulture production systems and assist in the development of the best management practices for the operation of environmentally sustainable agricultural enterprise

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to investigate alternative safe and effective permeation enhancers for buccal peptide delivery. Basic amino acids improved insulin solubility in water while 200 and 400 µg/mL lysine significantly increased insulin solubility in HBSS. Permeability data showed a significant improvement in insulin permeation especially for 10 µg/mL of lysine (p < 0.05) and 10 µg/mL histidine (p < 0.001), 100 µg/mL of glutamic acid (p < 0.05) and 200 µg/mL of glutamic acid and aspartic acid (p < 0.001) without affecting cell integrity; in contrast to sodium deoxycholate which enhanced insulin permeability but was toxic to the cells. It was hypothesized that both amino acids and insulin were ionised at buccal cavity pH and able to form stable ion pairs which penetrated the cells as one entity; while possibly triggering amino acid nutrient transporters on cell surfaces. Evidence of these transport mechanisms was seen with reduction of insulin transport at suboptimal temperatures as well as with basal-to-apical vectoral transport, and confocal imaging of transcellular insulin transport. These results obtained for insulin is the first indication of a possible amino acid mediated transport of insulin via formation of insulin-amino acid neutral complexes by the ion pairing mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports an experimental investigation designed to assess the influence of near-surface moisture contents on permeation properties of alkali-activated slag concrete (AASC). Five different drying periods (5, 10, 15, 20 and 25 days) and three AASC and normal concretes with compressive strength grades ranging from C30 to C60 were considered. Assessment of moisture distribution was
achieved using 100 mm diameter cores with drilled cavities. Results indicate that air permeability of AASC is very sensitive to the moisture content and its spatial distribution, especially at relative humidity above 65%. To control the influence of moisture on permeation testing, the recommendation of this paper is that AASC specimens should be dried in controlled conditions at 40 C for 10 days prior to testing. It was also concluded from this study that AASC tends to perform less well, in terms of air permeability and sorptivity, than normal concrete for a given strength grade. This conclusion reinforces the need to further examine AASC properties prior to its widespread practical use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les concentrés de protéines de lait sont couramment utilisés comme ingrédients lors de la standardisation du lait de fromagerie. La concentration des protéines est généralement réalisée par ultrafiltration (UF) à l’aide de membranes polymériques ayant un seuil de coupure de 10 kDa, et ce, jusqu’à un facteur de concentration volumique de 3.5X. Dans l’optique d’améliorer l’efficience du procédé d’UF, l’étude avait pour but de caractériser l’impact du mode opératoire (pression transmembranaire constante (465 et 672 kPa) et flux constant) ainsi que la température (10°C et 50°C) sur la performance du système jusqu’à un facteur de concentration volumique de 3.6X. Le module de filtration à l’échelle pilote comprenait une membrane d’UF en polyéthersulfone de 10 kDa d’une surface de 2,04 m2. La performance du système a été caractérisée sur le flux de perméation, la sélectivité et la consommation énergétique totale. L’étude a montré que le flux de perméation était 1,9 fois plus élevé à une température de 50°C comparativement à 10°C lors de l’UF du lait. Le coefficient de rejet des protéines n’a pas été affecté significativement par la pression transmembranaire et la température (P< 0,05). L’effet de la température a été observé au niveau de la teneur en calcium, laquelle était plus élevée de 12% dans les rétentats générés à 50C. La consommation énergétique totale du système d’UF était plus élevée à 10C comparativement à 50C, représentant 0,32±0,02 et 0,26±0,04 kWh/kg rétentat respectivement. Les résultats montrent que le ratio d’efficience énergétique (rapport entre le flux de perméation et la consommation énergétique) optimal a été obtenu à faible pression transmembranaire constante et à 50C. L’approche développée dans le cadre de ce projet fournira des outils aux industriels laitiers pour améliorer l’éco-efficience de leurs procédés de séparation baromembranaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of people each year. Although in recent decades significant progress has been made in relation to understanding the molecular and cellular events underlying the nervous damage, spinal cord injury is still a highly disabling condition for which there is no curative therapy. People affected by spinal cord injuries manifested dysfunction or loss, temporary or permanent, of motor, sensory and / or autonomic functions depending on the spinal lesion damaged. Currently, the incidence rate of this type of injury is approximately 15-40 cases per million people worldwide. At the origin of these lesions are: road accidents, falls, interpersonal violence and the practice of sports. In this work we placed the hypothesis that HA is one of the component of the scar tissue formed after a compressive SCI, that it is likely synthetised by the perilesional glial cells and that it might support the permeation of the glial scar during the late phase of SCI. Nowadays, much focus is drawn on the recovery of CNS function, made impossible after SCI due to the high content of sulfated proteoglycans in the extracellular matrix. Counterbalancing the ratio between these proteoglycans and hyaluronic acid could be one of the experimental therapy to re-permeate the glial scar tissue formed after SCI, making possible axonal regrowth and functional recovery. Therefore, we established a model of spinal cord compression in mice and studied the glial scar tissue, particularly through the characterization of the expression of enzymes related to the metabolism of HA and the subsequent concentration thereof at different distances of the lesion epicenter. Our results show that the lesion induced in mice shows results similar to those produced in human lesions, in terms of histologic similarities and behavioral results. but these animals demonstrate an impressive spontaneous reorganization mechanism of the spinal cord tissue that occurs after injury and allows for partial recovery of the functions of the CNS. As regards the study of the glial scar, changes were recorded at the level of mRNA expression of enzymes metabolizing HA i.e., after injury there was a decreased expression of HA synthases 1-2 (HAS 1-2) and an increase of the expression HAS3 synthase mRNA, as well as the enzymes responsible for the HA catabolism, HYAL 1-2. But the amount of HA measured through the ELISA test was found unchanged after injury, it is not possible to explain this fact only with the change of expression of enzymes. At two weeks and in response to SCI, we found synthesized HA by reactive astrocytes and probably by others like microglial cells as it was advanced by the HA/GFAP+ and HA/IBA1+ cells co-location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of nanoparticles in food packaging has been proposed on the basis that it could improve protection of foods by, for example, reducing permeation of gases, minimizing odor loss, and increasing mechanical strength and thermal stability. Consequently, the impacts of such nanoparticles on organisms and on the environment need to be investigated to ensure their safe use. In an earlier study, Moura and others (2008a) described the effect of addition of chitosan (CS) and poly(methacrylic acid) (PMAA) nanoparticles on the mechanical properties, water vapor, and oxygen permeability of hydroxypropyl methylcellulose films used in food packaging. Here, the genotoxicity of different polymeric CS/PMAA nanoparticles (size 60, 82, and 111 nm) was evaluated at different concentration levels, using the Allium cepa chromosome damage test as well as cytogenetic tests employing human lymphocyte cultures. Test substrates were exposed to solutions containing nanoparticles at polymer mass concentrations of 1.8, 18, and 180 mg/L. Results showed no evidence of DNA damage caused by the nanoparticles (no significant numerical or structural changes were observed), however the 82 and 111 nm nanoparticles reduced mitotic index values at the highest concentration tested (180 mg/L), indicating that the nanoparticles were toxic to the cells used at this concentration. In the case of the 60 nm CS/PMAA nanoparticles, no significant changes in the mitotic index were observed at the concentration levels tested, indicating that these particles were not toxic. The techniques used show promising potential for application in tests of nanoparticle safety envisaging the future use of these materials in food packaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-Graduação em Ciências da Saúde, 2012.