614 resultados para perennial ryegrass
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The animal trampling favors the soil compaction process in sheep raising and crop production integrated systems. This compression has negative effects, hindering the development of roots, the availability of nutrients, water and aeration, causing production losses, making it essential for the assessment of soil physical attributes for monitoring soil quality. Soil organic matter can be used to assess the quality of the soil, due to its relationship with the chemical, physical and biological soil properties. Conservation management system with tillage, along with systems integration between crops and livestock are being used to maintain and even increase the levels of soil organic matter. For that, a field experiment was carried out over a Oxisol clayey Alic in Guarapuava, PR, from de 2006 one. experiment sheep raising and crop production integrated systems The climate classified as Cfb .. The study was to evaluate the soil physical properties and quantify the stock of soil organic carbon and its compartmentalization in system integration crop - livestock with sheep under four nitrogen rates (0, 75, 150 and 225 kg ha-1) in the winter pasture, formed by the consortium oat (Avena strigosa) and ryegrass (Lolium multiflorum) and the effect of grazing (with and without). The soil samples blades density evaluations, total porosity, macro and micro, aggregation and carbon stocks were held in two phases: Phase livestock (after removal of the animals of the area) and phase crop (after maize cultivation). The collection of soil samples were carried out in layers of 0-0.5, 0.05-0.10, 0.10-0.20 and m. Data were subjected to analysis of variance and the hypotheses tested by the F test (p <0.05). For the quantitative effect data regression and the qualitative effect used the test medium. In non-significant regressions used the average and standard deviation treatments. The animal trampling caused an increase in bulk density in the 0.10-0.20 m layer. The dose of 225 kg N ha-1 in winter pasture increased total soil porosity at 8% compared to dose 0 kg N ha-1 in the crop stage. The grazing had no effect on soil macroporosity. GMD of aggregates in the phase after grazing the surface layer was damaged by grazing. Nitrogen rates used in the winter pasture and grazing not influence the total organic carbon stocks. The TOC is not influenced by nitrogen fertilization on grassland. The grazing increases the stock of POC in the 0.10-0.20 m layer livestock phase and cause the stock of POC in the 0-0.5 m layer in the crop stage. The MAC is not influenced by N rates applied in the pasture or by grazing.
Resumo:
Annual ryegrass is one of the species that best meets the needs of ranchers of southern Brazil during the winter period of the year. The breeding of ryegrass for many years has been developing superior materials, diploid and tetraploid, which, despite its higher prices for seed are being used by producers because of their better performance and quality. The objective of this research was to evaluate the behavior of different cultivars of Italian ryegrass - diploid and tetraploid, grazing, climate conditions of southwestern Paraná. The experiment was conducted in the city of Pato Branco / PR. The experimental design was a randomized block design with four replications. The observed cultivars were: LE 284, Camaro, Bakarat, Estações, Ponteio and Nibbio (diploid) and Winter Star, KLM 138, Escorpio, Titan, Barjumbo and Potro (tetraploid). The grazing was mob-grazing type time respecting input of 25 cm and 10 cm high output. It was observed that the cultivars that had high period of pasture use were those that produced larger amounts of forage. For all cultivars the highest forage accumulations occur between the months of August, September and October. Tetraploid have lower population density of tillers, but this does not affect the IAF among cultivars nor the interception of solar radiation before and after the completion of a grazing. NDF and ADF contents linearly increase with advancing in ryegrass cultivars development cycle. On average, tetraploid cultivars produce larger amounts of forage in relation to diploid cultivars.
Resumo:
The no-tillage system is the predominant model in the agricultural scenario of southern Brazil. Thus, the use of cover crops is significant due to the addition of biomass to protect the soil surface, and contribute to the cycling and/or fixing of nutrients, and in particular nitrogen (N) with liberation for the subsequent culture. Among the cool season species, it was found predominant use of oat to obtain straw to system. Though large quantities input of residue is not the preferred species to precede the corn, cereal with relevant importance in the Paraná Southwest region. It was aimed to evaluate the productivity capacity of corn in no-tillage, in the absence or presence of nitrogen fertilization, on waste of winter cover crops on soil and climatic conditions of the Paraná Southwest region. The installation of no-tillage was held in 2010 in the experimental area belonging to UTFPR, Campus Dois Vizinhos, on a Red Latosol. For the present study, we used data relating to three agricultural years (2012/2013, 2013/2014 and 2014/2015). The experimental design was randomized block design with split plots with three replications. The main plots consisted of systems composed by cover crops (black oat, ryegrass, rye, turnip, vetch, white lupine, aot+vetch consortium and oat+vetch+turnip), preceding corn. In the subplots were used two doses of nitrogen fertilization (0 and 180 kg ha N) coverage in maize.The biggest coverage rates occurred in the consortium with 95% at 62 days after sowing. The residual effect of 180 kg ha cool season plants following year. The residual effect of 180 kg ha systems, reduced in 21% the C/N ratio of poaceae. The common vetch accumulated 32 kg N per ton of MS added. The oat and rye keeps more than 50% waste to the land cover, after 120 days, while the ryegrass and vetch provide low soil protection. Consortium oat+vetch+turnip, vetch and white lupine, released the largest amounts of N, between 52 and 59 kg ha brassica and consortia positively influencing the diameter and length of cobs, number of kernels per row and, total number of grains per ear of corn, in the absence of mineral N. The weight of a thousand grains was increased by 12.4% by the addition of 180 kg ha increase in productivity of grain by the addition of 180 kg ha N, was 2.1 Mg ha 5.6 Mg ha 6.4 Mg ha components when cultivated on vetch. Systems containing fabaceae, brassica and consortium oat+vetch+turnip, predating the corn, in the absence of mineral N, provided similar grain yelds inrelation to the systems with the addition of 180 kg ha Keywords: Cover crops. No-tillage. Grain yield. Zea mays - 1 -1 N, increased 4.8% coverage rate in the of N in corn/cover crops -1 -1 . Fabaceae, -1 N mineral. The average N, in relation to dose 0 kg ha corn kernels on fabaceae, brassica and consortium oat+vetch+turnip, and poaceae the grains in succession. The consortium added amount between 4.0 the DM in the years of study. There was no effect of mineral N rate for corn yield components when cultivated on vetch. Systems containing fabaceae, brassica and consortium oat+vetch+turnip, predating the corn, in the absence of mineral N, provided similar grain yelds inrelation to the systems with the addition of 180 kg ha-1 N.
Resumo:
The proper use of management strategies, such as grazing intensity and nitrogen fertilization are primordial to the success of integrated crop-livestock system. Several studies have demonstrated the influence of grazing intensity and nitrogen fertilization on dynamics of forage production and nutrient cycling. However, most this researches studying these strategies in isolation and little is known about the interaction of these factors in the management of an integrated crop-livestock system. In this context, the aim of this study is to determine the best management strategy involving sward height and nitrogen fertilization, permitting greater forage production and improved efficiency in the use of nitrogen soil by a black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture in integrated crop-livestock system. The experiment was realized in Abelardo Luz – SC, in an area of 14 ha, where has been conducted an experiment in long term with integrated crop-livestock system under no-tillage since 2012. The experimental design is a randomized block design with three replications in a factorial design (2x2), the first factor was the grazing intensity (high and low), characterized by two sward height management (10 and 25 cm), and the second included the time factor application of N in the system: N applied on pasture (N-pasture) and N applied on the culture of grain (N-grain), at dose of 200 kg N ha stocking and variable stocking rate. The previous crop to pasture was corn. The nitrogen fertilization of pasture increased tiller density, forage density, participation of ryegrass ‘Barjumbo’ and percentage of ryegrass leaves in forage mass. Forage mass was less at low sward height on average, however the percentage of ryegrass ‘Barjumbo’ and rye leaves was greater and dead material was lower in this treatment. With nitrogen fertilization of pasture it was possible to double the amount of forage accumulated in periods with further development of ryegrass, furthermore, the total production of DM was increased in 38.4% and the shoot N concentration in 28.6%. When the nitrogen fertilization is applied in pasture, it is possible to keep black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture with an average sward height of 11 cm. The residual effect of N applied at corn was not sufficient to meet the nutritional needs of pasture and the forage production was affected by periods with N deficiency, while a single application of 200 kg N ha was sufficient to meet the N requirements throughout the forage accumulation period. The black oat ‘BRS 139’ plus ryegrass ‘Barjumbo’ pasture is efficient in use and recovery of the nitrogen applied in both treatments of sward height.
Resumo:
The increasing advancement of agriculture makes providing adequate conditions for the growth and development of plants is the primary purpose of soil management systems. Much of the success of PD is attributed to cultural remains left by cover crops that do not require high nitrogen inputs and can thus be used to reduce nitrogen input in the agro- ecosystem. The nitrogen is one of the elements applied in agriculture, it is absorbed in higher quantities and limiting the yield of grain crops such as corn. Thus, there has been the influence of the no-till and conventional tillage combined with different crops of winter cover and bare soil when in succession to corn, on mineral nitrogen content. The experimental work was made at the experimental station of the Agronomic Institute of Paraná - Iapar. The implemented design was blocks at random split plot with three replications in factorial 6 x 2 x 3 x 5. The main plots were as treatment, beyond the bare soil, 5 winter species (ryegrass, vetch, vetch + oat, oat and radish), while in the subplots were used two tillage systems (No-till and conventional tillage). Three collections made were (before management, the urea before and after the urea), these being held in 5 depths (0-5, 5-10, 10-20, 20-40 and 40-60 cm). So a layer 0-5 cm and a que presents increased amount to NH4 + ion. The use of associated PD system in the presence of winter cover crops decreased as NO3 - losses in soil profile.
Resumo:
The grazing lands of northern Australia contain a substantial soil organic carbon (SOC) stock due to the large land area. Manipulating SOC stocks through grazing management has been presented as an option to offset national greenhouse gas emissions from agriculture and other industries. However, research into the response of SOC stocks to a range of management activities has variously shown positive, negative or negligible change. This uncertainty in predicting change in SOC stocks represents high project risk for government and industry in relation to SOC sequestration programs. In this paper, we seek to address the uncertainty in SOC stock prediction by assessing relationships between SOC stocks and grazing land condition indicators. We reviewed the literature to identify land condition indicators for analysis and tested relationships between identified land condition indicators and SOC stock using data from a paired-site sampling experiment (10 sites). We subsequently collated SOC stock datasets at two scales (quadrat and paddock) from across northern Australia (329 sites) to compare with the findings of the paired-site sampling experiment with the aim of identifying the land condition indicators that had the strongest relationship with SOC stock. The land condition indicators most closely correlated with SOC stocks across datasets and analysis scales were tree basal area, tree canopy cover, ground cover, pasture biomass and the density of perennial grass tussocks. In combination with soil type, these indicators accounted for up to 42% of the variation in the residuals after climate effects were removed. However, we found that responses often interacted with soil type, adding complexity and increasing the uncertainty associated with predicting SOC stock change at any particular location. We recommend that caution be exercised when considering SOC offset projects in northern Australian grazing lands due to the risk of incorrectly predicting changes in SOC stocks with change in land condition indicators and management activities for a particular paddock or property. Despite the uncertainty for generating SOC sequestration income, undertaking management activities to improve land condition is likely to have desirable complementary benefits such as improving productivity and profitability as well as reducing adverse environmental impact.
Resumo:
The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.
Resumo:
The efficiency of microbial protein synthesis (EMPS) in cattle grazing a range of tropical pasture types was examined using a new method of intra-jugular infusion of CrEDTA to estimate urinary excretion of purine derivatives (PD). Seven pasture types were studied in south-east Queensland, Australia, over a 13-month period. These included native tropical grass (C4) pasture (major species Heteropogon contortus and Bothriochloa bladhii) studied in the early wet, the wet/dry transition and the dry season; introduced tropical grass (C4) pasture (Bothriochloa insculpta) in the mid wet season; two introduced tropical legume species (C3), (Lablab purpureus and Clitoria ternatea); and the temperate grass (C3) pasture, ryegrass (Lolium multiflorum). There was a large range in EMPS across pasture types: 26-209 g microbial crude protein (MCP)/kg digestible organic matter intake (DOMI). Estimated rumen degradable protein (RDP) supply (42-525 g/kg DOMI) was the major factor associated with EMPS across the range of pasture types studied. EMPS in steers grazing all tropical grass pastures was low (<130 g/kg DOMI) and limited by RDP supply. Negative linear relationships (P<0.05) between EMPS and both neutral detergent fibre (NDF) and acid detergent fibre (ADF) concentrations in extrusa were evident. However, non-fibre carbohydrate in extrusa, total non-structural carbohydrate concentration in plucked pasture leaf, rumen fluid and particle dilution rate, protozoal concentration in rumen fluid and rumen fluid pH were not correlated with EMPS. It was concluded that EMPS was well below 130 g MCP/kg DOMI when cattle grazed unfertilised, tropical grass pastures in south-east Queensland and that RDP was the primary limiting nutrient. High EMPS was associated with very high RDP, vastly in excess of RDP requirements by microbes
Resumo:
Weed management has become increasingly challenging for cotton growers in Australia in the last decade. Glyphosate, the cornerstone of weed management in the industry, is waning in effectiveness as a result of the evolution of resistance in several species. One of these, awnless barnyard grass, is very common in Australian cotton fields, and is a prime example of the new difficulties facing growers in choosing effective and affordable management strategies. RIM (Ryegrass Integrated Management) is a computer-based decision support tool developed for the south-western Australian grains industry. It is commonly used there as a tool for grower engagement in weed management thinking and strategy development. We used RIM as the basis for a new tool that can fulfil the same types of functions for subtropical Australian cotton-grains farming systems. The new tool, BYGUM, provides growers with a robust means to evaluate five-year rotations including testing the economic value of fallows and fallow weed management, winter and summer cropping, cover crops, tillage, different herbicide options, herbicide resistance management, and more. The new model includes several northernregion- specific enhancements: winter and summer fallows, subtropical crop choices, barnyard grass seed bank, competition, and ecology parameters, and more freedom in weed control applications. We anticipate that BYGUM will become a key tool for teaching and driving the changes that will be needed to maintain sound weed management in cotton in the near future.
Resumo:
Previous studies of greenhouse gas emissions (GHGE) from beef production systems in northern Australia have been based on models of ‘steady-state’ herd structures that do not take into account the considerable inter-annual variation in liveweight gain, reproduction and mortality rates that occurs due to seasonal conditions. Nor do they consider the implications of flexible stocking strategies designed to adapt these production systems to the highly variable climate. The aim of the present study was to quantify the variation in total GHGE (t CO2e) and GHGE intensity (t CO2e/t liveweight sold) for the beef industry in northern Australia when variability in these factors was considered. A combined GRASP–Enterprise modelling platform was used to simulate a breeding–finishing beef cattle property in the Burdekin River region of northern Queensland, using historical climate data from 1982–2011. GHGE was calculated using the method of Australian National Greenhouse Gas Inventory. Five different stocking-rate strategies were simulated with fixed stocking strategies at moderate and high rates, and three flexible stocking strategies where the stocking rate was adjusted annually by up to 5%, 10% or 20%, according to pasture available at the end of the growing season. Variation in total annual GHGE was lowest in the ‘fixed moderate’ (~9.5 ha/adult equivalent (AE)) stocking strategy, ranging from 3799 to 4471 t CO2e, and highest in the ‘fixed high’ strategy (~5.9 ha/AE), which ranged from 3771 to 7636 t CO2e. The ‘fixed moderate’ strategy had the least variation in GHGE intensity (15.7–19.4 t CO2e/t liveweight sold), while the ‘flexible 20’ strategy (up to 20% annual change in AE) had the largest range (10.5–40.8 t CO2e/t liveweight sold). Across the five stocking strategies, the ‘fixed moderate’ stocking-rate strategy had the highest simulated perennial grass percentage and pasture growth, highest average rate of liveweight gain (121 kg/steer), highest average branding percentage (74%) and lowest average breeding-cow mortality rate (3.9%), resulting in the lowest average GHGE intensity (16.9 t CO2e/t liveweight sold). The ‘fixed high’ stocking rate strategy (~5.9 ha/AE) performed the poorest in each of these measures, while the three flexible stocking strategies were intermediate. The ‘fixed moderate’ stocking strategy also yielded the highest average gross margin per AE carried and per hectare. These results highlight the importance of considering the influence of climate variability on stocking-rate management strategies and herd performance when estimating GHGE. The results also support a body of previous work that has recommended the adoption of moderate stocking strategies to enhance the profitability and ecological stability of beef production systems in northern Australia.
Resumo:
Terrestrial and oceanic biomass carbon sinks help reduce anthropogenic CO2 emissions and mitigate the long-term effect of increasing atmospheric CO2. Woody plants have large carbon pools because of their long residence time, however N availability can negatively impact tree responses to elevated CO2. Seasonal cycling of internal N in trees is a component that contributes to fitness especially in N limited environments. It involves resorption from senescing leaves of deciduous trees and storage as vegetative storage proteins (VSP) in perennial organs. Populus is a model organism for tree biology that efficiently recycles N. Bark storage proteins (BSP) are the most abundant VSP that serves as seasonal N reserves. Here I show how poplar growth is influenced by N availability and how growth is influenced by shoot competition for stored N reserves. I also provide data that indicates that auxin mediates BSP catabolism during renewed shoot growth. Understanding the components of N accumulation, remobilization and utilization can provide insights leading to increasing N use efficiency (NUE) of perennial plants.
Resumo:
Food irradiation is a treatment that involves subjecting in-bulk or packaged food to a controlled dose of ionizing radiation, with a clearly defined goal. It has been used for disinfestation and sanitization of food commodities and to retard postharvest ripening and senescence processes, being a sustainable alternative to chemical agents 1 . Doses up to 10 kGy are approved by several international authorities for not offering negative effects to food from a nutrition and toxicology point of view 2 . However, the adoption of this technology for food applications has been a slow process due to some misunderstandings by the consumer who often chooses non-irradiated foods. In this study, the effects of the ionizing radiation treatment on physical, chemical and bioactive properties of dried herbs and its suitability for preserving quality attributes of fresh vegetables during cold storage were evaluated. The studied herbs, perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) and common mallow (Malva neglecta Wallr.) were freeze-dried and then irradiated up to 10 kGy in a Cobalt-60 chamber. The selected vegetables, watercress (Nasturtium officinale R. Br.) and buckler sorrel (Rumex induratus Boiss. Reut.) were rinsed in tap water, packaged in polyethylene bags, submitted to irradiation doses up to 6 kGy and then were stored at 4 C for a period of up to 12 days. Physical, chemical and bioactive parameters of irradiated and non-irradiated samples were evaluated using different methodologies the colour was measured with a colorimeter, individual chemical compounds were analyzed by chromatographic techniques, antioxidant properties were evaluated using in vitro assays based on different reaction mechanisms, and other quality analyses were performed following official methods of analysis. The irradiation treatment did not significantly affect the colour of the perennial spotted rockrose samples, or its phenolic composition and antioxidant activity 3 . Medium doses preserved the colour of common mallow and a low dose did not induce any adverse effect in the organic acids profile. The green colour of the irradiated vegetables was maintained during cold storage but the treatment had pros and cons in other quality attributes. The 2 kGy dose preserved free sugars and favoured polyunsaturated fatty acids (PUFA) while the 5 kGy dose favoured tocopherols and preserved the antioxidant properties in watercress samples. The 6 kGy dose was a suitable option for preserving PUFA and the ω-6 ω-3 fatty acids ratio in buckler sorrel samples. This comprehensive experimental work allowed selecting appropriate processing doses for the studied plant foods in order to preserve its quality attributes and edibility.
Resumo:
Ce mémoire visait à déterminer les pratiques et les facteurs favorables au succès des réintroductions du carex faux-lupulina (Carex lupuliformis), une espèce vivace menacée poussant dans divers types de milieux humides ouverts du nord-est de l’Amérique du Nord. Pour répondre à cet objectif, des expériences de germination en serres ont été réalisées, et la survie, la vigueur et le microhabitat de chaque plant de carex faux-lupulina connu au Québec (sauvage ou réintroduit) ont été mesurés. Nos résultats montrent que le carex faux-lupulina est une espèce facile à propager ex situ. Une stratification froide (4°C) des semences dans du sable humide pendant un mois induit des taux de germination élevés. Nos résultats montrent également que des pucerons exotiques, ainsi qu’une transplantation dans des habitats inadaptés aux besoins de l’espèce en termes d’humidité du sol et de lumière disponible, ont causé la mort prématurée d’un grand nombre de transplants. Notre programme de réintroduction a permis d’établir une nouvelle population de l’espèce au Québec, et a potentiellement permis de sextupler la taille des populations de la province. Globalement, cette étude a permis de mieux comprendre l’écologie du carex faux-lupulina, et ainsi de faciliter la restauration de ses populations.
Resumo:
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous ecological functions, some of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field-validated, landscape-scale approaches for classifying wetlands based on their expected degree of connectivity with stream networks. During the 2015 water year, flow duration was recorded in non-perennial streams (n = 23) connecting forested wetlands and nearby perennial streams on the Delmarva Peninsula (Maryland, USA). Field and GIS-derived landscape metrics (indicators of catchment, wetland, non-perennial stream, and soil characteristics) were assessed as predictors of wetland-stream connectivity (duration, seasonal onset and offset dates). Connection duration was most strongly correlated with non-perennial stream geomorphology and wetland characteristics. A final GIS-based stepwise regression model (adj-R2 = 0.74, p < 0.0001) described wetland-stream connection duration as a function of catchment area, wetland area and number, and soil available water storage.