849 resultados para parasite migration
Resumo:
Black flies are opportunistic sugar-feeders. They take sugar meals from Homopteran honeydew secretions or plant nectars, depending on availability. Homopteran honeydew secretions contain both simple and complex carbohydrates while plant nectars contain primarily simple carbohydrates. In order to determine whether honeydew secretions offer more energy than plant nectars to their insect visitors a study of wild-caught black flies was undertaken in Algonquin Provincial Park, Canada during the spring of 1 998 and 1 999. It was hypothesized that female black flies maintained on honeydew sugars will survive longer, produce more eggs and have a greater parasite vectoring potential than those maintained on artificial nectar or distilled water. Results demonstrated that: (1) host-seeking female Prosimulimfuscum/mixtum and Simulium venustum maintained on artificial honeydew did not survive longer than those maintained on artificial nectar when fed ad libitum; (2) fiiUy engorged S. venustum and Simulium rugglesi maintained on artificial honeydew did not produce more eggs than those maintained on artificial nectar when fed ad libitum; and (3) S. rugglesi did not have a greater vectoring potential of Leucocytozoon simondi when maintained on artificial honeydew as opposed to artificial nectar when fed ad libitum. However, all flies maintained on the two sugars (artificial honeydew and artificial nectar) survived longer, produce more eggs and had greater vectoring potential than those maintained on distilled water alone.
Resumo:
A mycoparasite, Piptocephalis virginiana ^ shows a resemblance to fungal parasites of higher plants in the fine structure of hyphae and haustoria. The morphology and fine structure of host and parasitic fungi have been described. The mode of penetration of the host cell, Choanephora cucurbitarum , probably involves mechanical forces. Although the presence of cell wall degrading enzyme was not detected by conventional techniques, its role in penetration can't be ruled out. A collar around the haustorial neck is formed as an extension of the host cell wall. No papilla was detected although appressorixim was seen during penetration. The young haustorium is enclosed in highly invaginating plasmalemma of the host cell and n\imerous cisternae of endoplasmic reticulum. Appearance of an electron—dense sheath around the mature haustorium seems to coincide with the disappearance of cisternae of endoplasmic reticulum from the host cystoplasm in the vicinity of the haustorium. The role of host cytoplasm particularly of endoplasmic reticulum in the development of the sheath is discussed. Extensive accumulation of spherosomes-like bodies, containing lipids, is found in haustorium, parasite and host hypha. Electron microscope revealed the parasiticculture spore has more lipid content than the axenic culture spore of P. virginiana . The biochemical and cytochemical tests also support these results. The mature spore of C. cucurbitarum possesses a thick three-layered cell wall, different from the hyphal wall. Its germination is accompanied by the formation of an elastic thin inner layer which surrounds the emerging germ tube and the growing hypha. High resolution autoradiography showed that H N-acetyl-glucosamine , a precursor of chitin, was incorporated preferentially in the thin inner layer of the spore wall and also in the cell wall of the growing hypha. When the label was fed to the infected cells, at different intervals after inoculation, grains were observed on the sheath which developed around the haustorium of P. virginiana , 30 hours after inoculation. The significance of these results in relation to the origin and composition of the sheath is discussed.
Resumo:
examined in Choanephora cucurbita rum during the early stages of infection by Piptocephalis virginiana » There was a small but consistent increase in the leakage of electrolytes, amino acids and sugars as a result of infection. These low levels of differential leakage in infected tissues are explained on the basis of the nature of this obligate, biotrophic, mycoparasitic system. Quantitative analysis of the twenty six amino acids and amino compounds detected in the leacheates — showed similar profiles in infected and control host and no new species of amino acids or amino compounds were detected in either infected or control host leacheates. Comparatively high amounts of aspartic acid, glutamic acid and alanine were found in the leacheates of host and infected host . Analyses of the sugars comprising the leacheates of infected and control host showed the presence of eight sugars, among which glucose was found in significant amounts (50-53%) ' The nutritional implication of this preferential leakage is discussed. No significant difference was observed in the leacheates of infected host sugar profiles compared with that of the control host. Profiles of the internal pool sugars of infected and control host did not reflect that obtained from the leacheate data, perhaps owing to leakage of sugars in a selective manner . Membrane lipid analyses yielded higher levels of lipid in infected host compared with the control, both at the 24 h and 36 h analyses. In addition, preliminary investigations of phosphorous-32 incorporation and turnover in phospholipids showed higher levels of 32p incorporation and turnover in infected host compared with the control. No apparent difference was noted in the profiles of the neutral lipid classes and the polar lipid classes of the membrane lipids as determined by one and two dimensional thin-layer chromatography respectively. However, a small but consistently higher degree of unsaturation was detected in the fatty acids of infected tissue compared with the control. Also, '^''-^^''^^'-'-^'^^c acid, a polyunsaturated fatty acid previously reported to show a direct correlation during the early stages of infection and the degree of parasitism of P. virginiana on C. cucurbitarum , was found in higher amounts in infected host membrane lipids compared with that of the control host. The implications of these membrane lipid alterations are discussed with particular reference to the small but consistently higher leakage of electrolytes, amino acids and sugars observed during infection in this study.
Resumo:
An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.
Resumo:
Light microscope studies of the mycoparasite Piptocephalis virginiana revealed that the cylindrical spores of the parasite became spherical upon germination and produced 1-4 germ tubes. Generally t"l.vO germ tubes were produced by each spore. When this parasite was inoculated on its potential hosts, Choanephora cucurbitarum and Phascolomyces articulosus, the germ tube nearest to the host hypha continued to grow and made contact with the host hypha. The tip of the parasite's germ tube became swollen to form a distinct appressorium. Up to this stage the behavior of the parasite was similar regardless of the nature of the host. In the compatible host-parasite combination, the parasite penetrated the host, established a nutritional relationship and continued to grow to cover the host completely with its buff colored spores in 3-4 days. In the incompatible host-parasite combination, the parasite penetrated the host but its further advance was arrested. As a result of failure to establish a nutritional relationship with the resistant host, the parasite made further attempts to penetrate the host at different sites producing multiple infections. In the absence of nutrition the parasite weakened and the host outgrew the parasite completely. In the presence of a non-host species, Linderina pennispora the parasite continued to grow across the non-host 1).yp_hae vlithout establishing an initial contact. Germination studies showed that the parasite germinated equally well in the presence of host and non-host species. Further electron microscope studies revealed that the host-parasite interaction between P. virginiana and its host, C. cucurbi tarum, was compatible when the host hyphae were young slender, with a thin cell wall of one layer. The parasite appeared to penetrate mechanically by pushing the host-cell wall inward. The host plasma membrane invaginated along the involuted cell wall. The older hyphae of C. cucurbitarum possessed two distinct layers of cell wall and-showed an incompatible interaction when challenged vlith the parasite. At the point of contact, the outer layer of the host-cell wall dissolved, probably by enzymatic digestion, and the inner layer became thickened and developed a papilla as a result of its response to the parasite. The haustoria of the parasite in the old hyphae were always surrounded by a thick, well developed sheath, whereas the haustoria of the same age in the young host mycelium were devoid of a sheath during early stages of infection. Instead, they were in direct contact with the host protoplast. The incompatible interaction between a resistant host, P. articulosus and the parasite showed similar results as with the old hyphae of C. cucurbitarum. The cell wall of P. articulosus appeared thick-with two or more layers even in the 18-22 h-old hyphae. No contact or interaction was established between the parasite and the non-host L. pennispora. The role of cell wall in the resistance mechanism is discussed.
Resumo:
Female crickets respond selectively to variations in species-specific male calling songs. This selectivity has been shown to be age-dependent; older females are less choosy. However, female quality should also affect female selectivity. The effect of female quality on mate choice was examined in Gryllus integer by comparing the phonotactic responses of females on different diets and with different parasite loads to various synthetic models of conspecific calling song. Test females were virgin, 11-14 days old, and had been maintained on one of five diets varying in protein and fat content. Phonotaxis was quantified using a non-compensating Kugel treadmill which generates vector scores incorporating the speed and direction of movement of each female. Test females were presented with four calling song models which differed in pulse rate, but were still within the natural range of the species for the experimental temperature. After testing, females were dissected and the number of gregarine parasites within the digestive tract counted. There were no significant effects of either diet or parasitism on female motivation to mate although the combined effects of these variables seem to have an effect with no apparent trend. Control females did not discriminate among song types, but there was a trend of female preferences for lower pulse rates which are closest to the mean pulse rate for the species. Heavily parasitized females did not discriminate among pulse rates altho~gh there was a similar trend of high vector scores for low pulse rates. Diet, however, affected selectivity with poorly-fed females showing significantly high vector scores for pulse rates near the species mean. Such findings raise interesting questions about energy allocation and costs and risks of phonotaxis and mate choice in acoustic Orthoptera. These results are discussed in terms of sexual selection and female mate choice.
Resumo:
In the past ten years, many researchers have focussed their attention on parasites regarding the role they may play in causing variations in male secondary sexual traits and subsequent effects on female choice. Male age has also been suggested to be an important factor in female choice if old age reflects superior genes. This study investigated the effects that gregarine gut parasites, age, and diet have on the calling and mating behaviour of the male Texas field cricket, Gryllus integer. Male calling songs were recorded in the laboratory using a Digital Signal Processing Network. The song parameters measured were: pulse rate, pulse width, burst duration, pulses per burst, interburst interval, and percent missing pulses. The effects of parasite load and age on the various calling song parameters was investigated in crickets that were fed two different diets varying in nutritional quality. None of the calling song parameters were affected by either parasite load or age in either diet grou p. Courtship behaviour was ob served and recorded using an Eventlog recorder on an IBM computer in the laboratory. Females mated equally with paras(tized and unparasitized males and with old and young males The total duration and proportion of time spent performing each of 9 courtship displays were recorded for males on each diet. Only one display was affected by parasite load. Highly parasitized males fed the nutritionally inferior diet juddered for a proportionately shorter time than males with low parasite loads. Also, older males performed juddering and shaking antennae proportionally longer and juddering and raising wings for longer durations than younger males. Males that successfully mated were observed for performance of 8 post-copulatory guarding behaviour displays. None of the guarding behaviours were affected by parasite load. However, one display was affected by age, with older males performing guard turning for shorter durations than younger males. Results are discuss,ed in terms of the influence of parasites and age on female choice.