802 resultados para parallel programming paradigms
Resumo:
Pair Programming is a technique from the software development method eXtreme Programming (XP) whereby two programmers work closely together to develop a piece of software. A similar approach has been used to develop a set of Assessment Learning Objects (ALO). Three members of academic staff have developed a set of ALOs for a total of three different modules (two with overlapping content). In each case a pair programming approach was taken to the development of the ALO. In addition to demonstrating the efficiency of this approach in terms of staff time spent developing the ALOs, a statistical analysis of the outcomes for students who made use of the ALOs is used to demonstrate the effectiveness of the ALOs produced via this method.
Resumo:
A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced.
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
The EP2025 EDS project develops a highly parallel information server that supports established high-value interfaces. We describe the motivation for the project, the architecture of the system, and the design and application of its database and language subsystems. The Elipsys logic programming language, its advanced applications, EDS Lisp, and the Metal machine translation system are examined.
Resumo:
An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
A parallel convolutional coder (104) comprising: a plurality of serial convolutional coders (108) each having a register with a plurality of memory cells and a plurality of serial coder outputs,- input means (120) from which data can be transferred in parallel into the registers,- and a parallel coder output (124) comprising a plurality of output memory cells each of which is connected to one of the serial coder outputs so that data can be transferred in parallel from all of the serial coders to the parallel coder output.
Resumo:
Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre- versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.
Resumo:
In Central Brazil, the long-term sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, ‘asset value of cattle (representing cattle ownership)' and ‘present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics, and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple ‘no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil.
Resumo:
In Central Brazil, the long-term, sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from. degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, 'asset value of cattle (representing cattle ownership and 'present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring caring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics,and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple 'no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil. (C) 2004 Elsevier Ltd. All rights reserved.