883 resultados para pacs: information technolgy applications
Resumo:
Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^
Resumo:
Information Centric Networking (ICN) as an emerging paradigm for the Future Internet has initially been rather focusing on bandwidth savings in wired networks, but there might also be some significant potential to support communication in mobile wireless networks as well as opportunistic network scenarios, where end systems have spontaneous but time-limited contact to exchange data. This chapter addresses the reasoning why ICN has an important role in mobile and opportunistic networks by identifying several challenges in mobile and opportunistic Information-Centric Networks and discussing appropriate solutions for them. In particular, it discusses the issues of receiver and source mobility. Source mobility needs special attention. Solutions based on routing protocol extensions, indirection, and separation of name resolution and data transfer are discussed. Moreover, the chapter presents solutions for problems in opportunistic Information-Centric Networks. Among those are mechanisms for efficient content discovery in neighbour nodes, resume mechanisms to recover from intermittent connectivity disruptions, a novel agent delegation mechanisms to offload content discovery and delivery to mobile agent nodes, and the exploitation of overhearing to populate routing tables of mobile nodes. Some preliminary performance evaluation results of these developed mechanisms are provided.
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
Cloud Computing is an enabler for delivering large-scale, distributed enterprise applications with strict requirements in terms of performance. It is often the case that such applications have complex scaling and Service Level Agreement (SLA) management requirements. In this paper we present a simulation approach for validating and comparing SLA-aware scaling policies using the CloudSim simulator, using data from an actual Distributed Enterprise Information System (dEIS). We extend CloudSim with concurrent and multi-tenant task simulation capabilities. We then show how different scaling policies can be used for simulating multiple dEIS applications. We present multiple experiments depicting the impact of VM scaling on both datacenter energy consumption and dEIS performance indicators.
Resumo:
The Mobile Cloud Networking project develops among others, several virtualized services and applications, in particular: (1) IP Multimedia Subsystem as a Service that gives the possibility to deploy a virtualized and on-demand instance of the IP Multimedia Subsystem platform, (2) Digital Signage Service as a Service that is based on a re-designed Digital Signage Service architecture, adopting the cloud computing principles, and (3) Information Centric Networking/Content Delivery Network as a Service that is used for distributing, caching and migrating content from other services. Possible designs for these virtualized services and applications have been identified and are being implemented. In particular, the architectures of the mentioned services were specified, adopting cloud computing principles, such as infrastructure sharing, elasticity, on-demand and pay-as-you-go. The benefits of Reactive Programming paradigm are presented in the context of Interactive Cloudified Digital Signage services in a Mobile Cloud Platform, as well as the benefit of interworking between different Mobile Cloud Networking Services as Digital Signage Service and Content Delivery Network Service for better performance of Video on Demand content deliver. Finally, the management of Service Level Agreements and the support of rating, charging and billing has also been considered and defined.
Resumo:
Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.
Resumo:
Mobile networks usage rapidly increased over the years, with great consequences in terms of performance requirements. In this paper, we propose mechanisms to use Information-Centric Networking to perform load balancing in mobile networks, providing content delivery over multiple radio technologies at the same time and thus efficiently using resources and improving the overall performance of content transfer. Meaningful results were obtained by comparing content transfer over single radio links with typical strategies to content transfer over multiple radio links with Information-Centric Networking load balancing. Results demonstrate that Information-Centric Networking load balancing increases the performance and efficiency of 3GPP Long Term Evolution mobile networks while greatly improving the network perceived quality for end users.
Resumo:
Crowdsourcing linguistic phenomena with smartphone applications is relatively new. In linguistics, apps have predominantly been developed to create pronunciation dictionaries, to train acoustic models, and to archive endangered languages. This paper presents the first account of how apps can be used to collect data suitable for documenting language change: we created an app, Dialäkt Äpp (DÄ), which predicts users’ dialects. For 16 linguistic variables, users select a dialectal variant from a drop-down menu. DÄ then geographically locates the user’s dialect by suggesting a list of communes where dialect variants most similar to their choices are used. Underlying this prediction are 16 maps from the historical Linguistic Atlas of German-speaking Switzerland, which documents the linguistic situation around 1950. Where users disagree with the prediction, they can indicate what they consider to be their dialect’s location. With this information, the 16 variables can be assessed for language change. Thanks to the playfulness of its functionality, DÄ has reached many users; our linguistic analyses are based on data from nearly 60,000 speakers. Results reveal a relative stability for phonetic variables, while lexical and morphological variables seem more prone to change. Crowdsourcing large amounts of dialect data with smartphone apps has the potential to complement existing data collection techniques and to provide evidence that traditional methods cannot, with normal resources, hope to gather. Nonetheless, it is important to emphasize a range of methodological caveats, including sparse knowledge of users’ linguistic backgrounds (users only indicate age, sex) and users’ self-declaration of their dialect. These are discussed and evaluated in detail here. Findings remain intriguing nevertheless: as a means of quality control, we report that traditional dialectological methods have revealed trends similar to those found by the app. This underlines the validity of the crowdsourcing method. We are presently extending DÄ architecture to other languages.
Resumo:
Diffusion-weighted imaging (DWI) is an established diagnostic tool with regards to the central nervous system (CNS) and research into its application in the musculoskeletal system has been growing. It has been shown that DWI has utility in differentiating vertebral compression fractures from malignant ones, assessing partial and complete tears of the anterior cruciate ligament (ACL), monitoring tumor response to therapy, and characterization of soft-tissue and bone tumors. DWI is however less useful in differentiating malignant vs. infectious processes. As of yet, no definitive qualitative or quantitative properties have been established due to reasons ranging from variability in acquisition protocols to overlapping imaging characteristics. Even with these limitations, DWI can still provide clinically useful information, increasing diagnostic accuracy and improving patient management when magnetic resonance imaging (MRI) findings are inconclusive. The purpose of this article is to summarize recent research into DWI applications in the musculoskeletal system.
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^
Resumo:
The Internet, and specifically web 2.0 social media applications, offers an innovative method for communicating child health information to low-income parents. The main objective of this study was to use qualitative data to determine the value of using social media to reach low-income parents with child health information. A qualitative formative evaluation employing focus groups was used to determine the value of using social media for dissemination of child health information. Inclusion criteria included: (1) a parent with a child that attends a school in a designated Central Texas school district; and (2) English-speaking. The students who attend these schools are generally economically disadvantaged and are predominately Hispanic. The classic analysis strategy was used for data analysis. Focus group participants (n=19) were female (95%); White (53%), Hispanic (42%) or African American (5%); and received government assistance (63%). Most had access to the Internet (74%) and were likely to have low health literacy (53%). The most preferred source of child health information was the family pediatrician or general practitioner. Many participants were familiar with social media applications and had profiles on popular social networking sites, but used them infrequently. Objections to social media sites as sources of child health information included lack of credibility and parent time. Social media has excellent potential for reaching low-income parents when used as part of a multi-channel communication campaign. Further research should focus on the most effective type and format of messages that can promote behavior change in this population, such as story-telling. ^
Resumo:
Epilepsy is a very complex disease which can have a variety of etiologies, co-morbidities, and a long list of psychosocial factors4. Clinical management of epilepsy patients typically includes serological tests, EEG's, and imaging studies to determine the single best antiepileptic drug (AED). Self-management is a vital component of achieving optimal health when living with a chronic disease. For patients with epilepsy self-management includes any necessary actions to control seizures and cope with any subsequent effects of the condition9; including aspects of treatment, seizure, and lifestyle. The use of computer-based applications can allow for more effective use of clinic visits and ultimately enhance the patient-provider relationship through focused discussion of determinants affecting self-management. ^ The purpose of this study is to conduct a systematic literature review on informatics application in epilepsy self-management in an effort to describe current evidence for informatics applications and decision support as an adjunct to successful clinical management of epilepsy. Each publication was analyzed for the type of study design utilized. ^ A total of 68 publications were included and categorized by the study design used, development stage, and clinical domain. Descriptive study designs comprised of three-fourths of the publications and indicate an underwhelming use of prospective studies. The vast majority of prospective studies also focused on clinician use to increase knowledge in treating patients with epilepsy. ^ Due to the chronic nature of epilepsy and the difficulty that both clinicians and patients can experience in managing epilepsy, more prospective studies are needed to evaluate applications that can effectively increase management activities. Within the last two decades of epilepsy research, management studies have employed the use of biomedical informatics applications. While the use of computer applications to manage epilepsy has increased, more progress is needed.^