908 resultados para one element per member
Resumo:
Within Australia, motor vehicle injury is the leading cause of hospital admissions and fatalities. Road crash data reveals that among the factors contributing to crashes in Queensland, speed and alcohol continue to be overrepresented. While alcohol is the number one contributing factor to fatal crashes, speeding also contributes to a high proportion of crashes. Research indicates that risky driving is an important contributor to road crashes. However, it has been debated whether all risky driving behaviours are similar enough to be explained by the same combination of factors. Further, road safety authorities have traditionally relied upon deterrence based countermeasures to reduce the incidence of illegal driving behaviours such as speeding and drink driving. However, more recent research has focussed on social factors to explain illegal driving behaviours. The purpose of this research was to examine and compare the psychological, legal, and social factors contributing to two illegal driving behaviours: exceeding the posted speed limit and driving when over the legal blood alcohol concentration (BAC) for the drivers licence type. Complementary theoretical perspectives were chosen to comprehensively examine these two behaviours including Akers’ social learning theory, Stafford and Warr’s expanded deterrence theory, and personality perspectives encompassing alcohol misuse, sensation seeking, and Type-A behaviour pattern. The program of research consisted of two phases: a preliminary pilot study, and the main quantitative phase. The preliminary pilot study was undertaken to inform the development of the quantitative study and to ensure the clarity of the theoretical constructs operationalised in this research. Semi-structured interviews were conducted with 11 Queensland drivers recruited from Queensland Transport Licensing Centres and Queensland University of Technology (QUT). These interviews demonstrated that the majority of participants had engaged in at least one of the behaviours, or knew of someone who had. It was also found among these drivers that the social environment in which both behaviours operated, including family and friends, and the social rewards and punishments associated with the behaviours, are important in their decision making. The main quantitative phase of the research involved a cross-sectional survey of 547 Queensland licensed drivers. The aim of this study was to determine the relationship between speeding and drink driving and whether there were any similarities or differences in the factors that contribute to a driver’s decision to engage in one or the other. A comparison of the participants self-reported speeding and self-reported drink driving behaviour demonstrated that there was a weak positive association between these two behaviours. Further, participants reported engaging in more frequent speeding at both low (i.e., up to 10 kilometres per hour) and high (i.e., 10 kilometres per hour or more) levels, than engaging in drink driving behaviour. It was noted that those who indicated they drove when they may be over the legal limit for their licence type, more frequently exceeded the posted speed limit by 10 kilometres per hour or more than those who complied with the regulatory limits for drink driving. A series of regression analyses were conducted to investigate the factors that predict self-reported speeding, self-reported drink driving, and the preparedness to engage in both behaviours. In relation to self-reported speeding (n = 465), it was found that among the sociodemographic and person-related factors, younger drivers and those who score high on measures of sensation seeking were more likely to report exceeding the posted speed limit. In addition, among the legal and psychosocial factors it was observed that direct exposure to punishment (i.e., being detected by police), direct punishment avoidance (i.e., engaging in an illegal driving behaviour and not being detected by police), personal definitions (i.e., personal orientation or attitudes toward the behaviour), both the normative and behavioural dimensions of differential association (i.e., refers to both the orientation or attitude of their friends and family, as well as the behaviour of these individuals), and anticipated punishments were significant predictors of self-reported speeding. It was interesting to note that associating with significant others who held unfavourable definitions towards speeding (the normative dimension of differential association) and anticipating punishments from others were both significant predictors of a reduction in self-reported speeding. In relation to self-reported drink driving (n = 462), a logistic regression analysis indicated that there were a number of significant predictors which increased the likelihood of whether participants had driven in the last six months when they thought they may have been over the legal alcohol limit. These included: experiences of direct punishment avoidance; having a family member convicted of drink driving; higher levels of Type-A behaviour pattern; greater alcohol misuse (as measured by the AUDIT); and the normative dimension of differential association (i.e., associating with others who held favourable attitudes to drink driving). A final logistic regression analysis examined the predictors of whether the participants reported engaging in both drink driving and speeding versus those who reported engaging in only speeding (the more common of the two behaviours) (n = 465). It was found that experiences of punishment avoidance for speeding decreased the likelihood of engaging in both speeding and drink driving; whereas in the case of drink driving, direct punishment avoidance increased the likelihood of engaging in both behaviours. It was also noted that holding favourable personal definitions toward speeding and drink driving, as well as higher levels of on Type-A behaviour pattern, and greater alcohol misuse significantly increased the likelihood of engaging in both speeding and drink driving. This research has demonstrated that the compliance with the regulatory limits was much higher for drink driving than it was for speeding. It is acknowledged that while speed limits are a fundamental component of speed management practices in Australia, the countermeasures applied to both speeding and drink driving do not appear to elicit the same level of compliance across the driving population. Further, the findings suggest that while the principles underpinning the current regime of deterrence based countermeasures are sound, current enforcement practices are insufficient to force compliance among the driving population, particularly in the case of speeding. Future research should further examine the degree of overlap between speeding and drink driving behaviour and whether punishment avoidance experiences for a specific illegal driving behaviour serve to undermine the deterrent effect of countermeasures aimed at reducing the incidence of another illegal driving behaviour. Furthermore, future work should seek to understand the factors which predict engaging in speeding and drink driving behaviours at the same time. Speeding has shown itself to be a pervasive and persistent behaviour, hence it would be useful to examine why road safety authorities have been successful in convincing the majority of drivers of the dangers of drink driving, but not those associated with speeding. In conclusion, the challenge for road safety practitioners will be to convince drivers that speeding and drink driving are equally risky behaviours, with the ultimate goal to reduce the prevalence of both behaviours.
Resumo:
Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Another beneficial characteristic is that they allow torsionally rigid rectangular flanges to be combined with economical fabrication processes. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems. When used as floor joists, these sections require openings in the web to provide access for inspection and other services. At present, however, there is no design method available that provides accurate predictions of the moment capacities of LSBs with web openings. This paper presents the results of an investigation of the buckling and ultimate strength behaviour of LSB flexural members with web openings. A detailed fine element analysis (FEA)-based parametric study was conducted with the aim of developing appropriate design rules and making recommendations for the safe design of LSB floor joists. The results include the required moment capacity curves for LSB sections with a range of web opening combinations and spans and the development of appropriate design rules for the prediction of the ultimate moment capacities of LSBs with web openings.
Resumo:
This study examines nascent entrepreneurship by comparing individuals engaged in nascent activities (n=380) with a control group (n=608), after screening a sample from the general population (n=30,427). The study then follows the developmental process of nascent entrepreneurs for 18 months. Bridging and bonding social capital, consisting of both strong and weak ties, was a robust predictor for nascent entrepreneurs, as well as for advancing through the start-up process. With regard to outcomes like first sale or showing a profit, only one aspect of social capital, viz. being a member of a business network, had a statistically significant positive effect. The study supports human capital in predicting entry into nascent entrepreneurship, but only weakly for carrying the start-up process towards successful completion.
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Ecological sustainability has been proposed to address the problem of human impacts increasingly degrading planetary resources and ecosystems, threatening biodiversity, eco-services and human survival. Ecological sustainability is an imperative, with Australia having one of the highest eco-footprints per person worldwide. While significant progress has been made via implementation of ecologically sustainable design in urban communities, relatively little has been undertaken in small, disparate regional communities in Australia. Regional communities are disadvantaged by rural economic decline associated with structural change and inequities of resource transfer. The ecologically sustainable solution is holistic, so all settlements need to be globally wise, richly biodiverse yet locally specific. As a regional solution to this global problem, this research offers the practical means by which a small regional community can contribute. It focuses on the design and implementation of a community centre and the fostering of transformative community learning through an integrated ‘learning community’ awareness of ecologically sustainable best practice. Lessons learned are documented by the participant researcher who as a designer, facilitator, local resident and social narrator has been deeply connected with the Tweed-Caldera region over a period since 1980. The collective action of the local community of Chillingham has been diligently recorded over a decade of design and development. Over this period, several positive elements emerged in terms of improvements to the natural and built environment, greater social cohesion and co-operative learning along with a shift towards a greener local economy. Behavioural changes in the community were noted as residents strived to embrace ecological ideals and reduce fossil fuel dependency. They found attractive local solutions to sourcing of food and using local employment opportunities to up skill their residents via transformative learning as a community in transition. Finally, the catalytic impact of external partnering has also been documented. How well the region as a whole has achieved its ecologically sustainable objectives is measured in terms of the delivered success of private and public partnering with the community, the creation of a community centre cum environment education centre, the restoration of local heritage buildings, the repair of riparian forests and improved water conditions in local river systems, better roads and road safety, local skills and knowledge transfer, support of local food and local/regional growers markets to attract tourists via the integrated trails network. In aggregate, each and every element contributes to a measure of eco-positive development for the built environment, its social organisation and its economy that has guided the local community to find its own pathway to sustainability. Within the Tweed-Caldera bioregion in northern New South Wales, there has been a lack of strategic planning, ecologically sustainable knowledge and facilities in isolated communities that could support the development of a local sustained green economy, provide a hub for socio-cultural activities and ecology based education. The first challenge in this research was to model a whole systems approach to eco-positive development in Chillingham, NSW, a small community where Nature and humanity know no specific boundary. The net result was the creation of a community environment education centre featuring best-affordable ecological practice and regionally distinctive, educational building form from a disused heritage building (cow bale). This development, implemented over a decade, resonated with the later regional wide programs that were linked in the Caldera region by the common purpose of extending the reach of local and state government assistance to regional NSW in economic transition coupled with sustainability. The lessons learned from these linked projects reveal that subsequent programs have been significantly easier to initiate, manage, develop and deliver results. In particular, pursuing collaborative networks with all levels of government and external private partners has been economically effective. Each community’s uniqueness has been celebrated and through drawing out these distinctions, has highlighted local vision, strategic planning, sense of belonging and connection of people with place. This step has significantly reduced the level of friction between communities that comes from natural competition for the finite pool of funds. Following the pilot Tweed-Caldera study, several other NSW regional communities are now undertaking a Community Economic Transition Program based on the processes, trials and positive experiences witnessed in the Tweed-Caldera region where it has been demonstrated that regional community transition programs can provide an opportunity to plan and implement effective long term strategies for sustainability, empowering communities to participate in eco-governance. This thesis includes the design and development of a framework for community created environment education centres to provide an equal access place for community to participate to meet their essential needs locally. An environment centre that facilitates community transition based on easily accessible environmental education, skills and infrastructure is necessary to develop local cultures of sustainability. This research draws upon the literatures of ecologically sustainable development, environmental education and community development in the context of regional community transition towards ‘strong sustainability’. The research approach adapted is best described as a four stage collaborative action research cycle where the participant researcher (me) has a significant involvement in the process to foster local cultures of sustainability by empowering its citizens to act locally and in doing so, become more self reliant and socially resilient. This research also draws upon the many fine working exemplars, such as the resilience of the Cuban people, the transition town initiative in Totnes, U.K. and the models of Australian Community Gardens, such as CERES (Melbourne) and Northey Street (Brisbane). The objectives of this study are to research and evaluate exemplars of ecologically sustainable environment education centres, to facilitate the design and development of an environment education centre created by a small regional community as an ecologically sustainable learning environment; to facilitate a framework for community transition based on environmental education, skills and infrastructure necessary to develop local cultures of sustainability. The research was undertaken as action research in the Tweed Caldera in Northern NSW. This involved the author as participant researcher, designer and volunteer in two interconnected initiatives: the Chillingham Community Centre development and the Caldera Economic Transition Program (CETP). Both initiatives involved a series of design-led participatory community workshops that were externally facilitated with the support of government agency partnerships, steering committees and local volunteers. Together the Caldera research programs involved communities participating in developing their own strategic planning process and outcomes. The Chillingham Community Centre was developed as a sustainable community centre/hub using a participatory design process. The Caldera Economic Transition Program (CETP) prioritised Caldera region projects: the Caldera farmer’s market; community gardens and community kitchens; community renewable energy systems and an integrated trails network. The significant findings were: the CETP projects were capable of moving towards an eco-positive design benchmark through transformative learning. Community transition to sustainability programs need to be underpinned by sustainability and environmental education based frameworks and practical on ground experience in local needs based projects through transformative learning. The actioned projects were successfully undertaken through community participation and teamwork. Ecological footprint surveys were undertaken to guide and assess the ongoing community transition process, however the paucity of responses needs to be revisited. The concept of ecologically sustainable development has been adopted internationally, however existing design and planning strategies do not assure future generations continued access to healthy natural life support systems. Sustainable design research has usually been urban focussed, with little attention paid to regional communities. This study seeks to redress this paucity through the design of ecologically sustainable (deep green) learning environments for small regional communities. Through a design-led process of environmental education, this study investigates how regional communities can be facilitated to model the principles of eco-positive development to support transition to local cultures of sustainability. This research shows how community transition processes and projects can incorporate sustainable community development as transformative learning through design. Regional community transition programs can provide an opportunity to plan long term strategies for sustainability, empowering people to participate in eco-governance. A framework is developed for a community created environment education centre to provide an equal access place for the local community to participate in implementing ways to meet their essential needs locally. A community environment education centre that facilitates community transition based on holistic environmental education, skills and infrastructure is necessary to develop local cultures of sustainability.
Resumo:
Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
This paper presents a strategy to predict the lifetime of rails subjected to large rolling contact loads that induce ratchetting strains in the rail head. A critical element concept is used to calculate the number of loading cycles needed for crack initiation to occur in the rail head surface. In this technique the finite element method (FEM) is used to determine the maximum equivalent ratchetting strain per load cycle, which is calculated by combining longitudinal and shear stains in the critical element. This technique builds on a previously developed critical plane concept that has been used to calculate the number of cycles to crack initiation in rolling contact fatigue under ratchetting failure conditions. The critical element concept simplifies the analytical difficulties of critical plane analysis. Finite element analysis (FEA) is used to identify the critical element in the mesh, and then the strain values of the critical element are used to calculate the ratchetting rate analytically. Finally, a ratchetting criterion is used to calculate the number of cycles to crack initiation from the ratchetting rate calculated.
Resumo:
Beginning in the second half of the 20th century, ICTs transformed many societies from industrial societies in which manufacturing was the central focus, into knowledge societies in which dealing effectively with data and information has become a central element of work (Anderson, 2008). To meet the needs of the knowledge society, universities must reinvent their structures and processes, their curricula and pedagogic practices. In addition to this, of course higher education is itself subject to the sweeping influence of ICTs. But what might effective higher education look like in the 21st century? In designing higher education systems and learning experiences which are responsive to the learning needs of the future and exploit the possibilities offered by ICTs, we can learn much from the existing professional development strategies of people who are already successful in 21st century fields, such as digital media. In this study, I ask: (1) what are the learning challenges faced by digital media professionals in the 21st century? (2) what are the various roles of formal and informal education in their professional learning strategies at present? (3) how do they prefer to acquire needed capabilities? In-depth interviews were undertaken with successful Australian digital media professionals working in micro businesses and SMEs to answer these questions. The strongest thematic grouping that emerged from the interviews related to the need for continual learning and relearning because of the sheer rate of change in the digital media industries. Four dialectical relationships became apparent from the interviewees’ commentaries around the learning imperatives arising out of the immense and continual changes occurring in the digital content industries: (1) currency vs best practice (2) diversification vs specialisation of products and services (3) creative outputs vs commercial outcomes (4) more learning opportunities vs less opportunity to learn. These findings point to the importance of ‘learning how to learn’ as a 21st century capability. The interviewees were ambivalent about university courses as preparation for professional life in their fields. Higher education was described by several interviewees as having relatively little value-add beyond what one described as “really expensive credentialling services.” For all interviewees in this study, informal learning strategies were the preferred methods of acquiring the majority of knowledge and skills, both for ongoing and initial professional development. Informal learning has no ‘curriculum’ per se, and tends to be opportunistic, unstructured, pedagogically agile and far more self-directed than formal learning (Eraut, 2004). In an industry impacted by constant change, informal learning is clearly both essential and ubiquitous. Inspired by the professional development strategies of the digital media professionals in this study, I propose a 21st century model of the university as a broad, open learning ecology, which also includes industry, professionals, users, and university researchers. If created and managed appropriately, the university learning network becomes the conduit and knowledge integrator for the latest research and industry trends, which students and professionals alike can access as needed.
Resumo:
This study examines nascent entrepreneurship by comparing individuals engaged in nascent activities (n=380) with a control group (n=608), after screening a sample from the general population (n=30,427). The study then follows the developmental process of nascent entrepreneurs for 18 months. Bridging and bonding social capital, consisting of both strong and weak ties, was a robust predictor for nascent entrepreneurs, as well as for advancing through the start-up process. With regard to outcomes like first sale or showing a profit, only one aspect of social capital, viz. being a member of a business network, had a statistically significant positive effect. The study supports human capital in predicting entry into nascent entrepreneurship, but only weakly for carrying the start-up process towards successful completion.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
The coupling of kurtosis based-indexes and envelope analysis represents one of the most successful and widespread procedures for the diagnostics of incipient faults on rolling element bearings. Kurtosis-based indexes are often used to select the proper demodulation band for the application of envelope-based techniques. Kurtosis itself, in slightly different formulations, is applied for the prognostic and condition monitoring of rolling element bearings, as a standalone tool for a fast indication of the development of faults. This paper shows for the first time the strong analytical connection which holds for these two families of indexes. In particular, analytical identities are shown for the squared envelope spectrum (SES) and the kurtosis of the corresponding band-pass filtered analytic signal. In particular, it is demonstrated how the sum of the peaks in the SES corresponds to the raw 4th order moment. The analytical results show as well a link with an another signal processing technique: the cepstrum pre-whitening, recently used in bearing diagnostics. The analytical results are the basis for the discussion on an optimal indicator for the choice of the demodulation band, the ratio of cyclic content (RCC), which endows the kurtosis with selectivity in the cyclic frequency domain and whose performance is compared with more traditional kurtosis-based indicators such as the protrugram. A benchmark, performed on numerical simulations and experimental data coming from two different test-rigs, proves the superior effectiveness of such an indicator. Finally a short introduction to the potential offered by the newly proposed index in the field of prognostics is given in an additional experimental example. In particular the RCC is tested on experimental data collected on an endurance bearing test-rig, showing its ability to follow the development of the damage with a single numerical index.
Resumo:
This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).