928 resultados para nutrient gradients
Resumo:
The aim of this study was to investigate the effects of a severe nutrient restriction on mammary tissue morphology and remodeling, mammary epithelial cell (MEC) turnover and activity, and hormonal status in lactating dairy cows. We used 16 Holstein x Normande crossbred dairy cows, divided into 2 groups submitted to different feeding levels (basal and restricted) from 2 wk before calving to wk 11 postpartum. Restricted-diet cows had lower 11-wk average daily milk yield from calving to slaughter than did basal-diet cows (20.5 vs. 33.5 kg/d). Feed restriction decreased milk fat, protein, and lactose yields. Restriction also led to lower plasma insulin-like growth factor 1 and higher growth hormone concentrations. Restricted-diet cows had lighter mammary glands than did basal-diet cows. The total amount of DNA in the mammary gland and the size of the mammary acini were smaller in the restricted-diet group. Feed restriction had no significant effect on MEC proliferation at the time of slaughter but led to a higher level of apoptosis in the mammary gland. Gelatin zymography highlighted remodeling of the mammary extracellular matrix in restricted-diet cows. Udders from restricted-diet cows showed lower transcript expression of alpha-lactalbumin and kappa-casein. In conclusion, nutrient restriction resulted in lower milk yield in lactating dairy cows, partly due to modulation of MEC activity and a lower number of mammary cells. An association was found between feed restriction-induced changes in the growth hormone-insulin-like growth factor-1 axis and mammary epithelial cell dynamics.
Resumo:
Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2011 there were twelve themed workshops, four of which are summarized in this report. These workshops related to both basic science and clinical research into placental growth and nutrient sensing and were divided into 1) placenta: predicting future health; 2) roles of lipids in the growth and development of feto-placental unit; 3) placental nutrient sensing; 4) placental research to solve clinical problems: a translational approach.
Resumo:
Background The European trout (Salmo trutta species complex) occurs across a very wide altitudinal range from lowland rivers to alpine streams. Historically, the major European river systems contained different, evolutionarily distinct trout lineages, and some of this genetic diversity has persisted in spite of extensive human-mediated translocations. We used AFLP-based genome scans to investigate the extent of potentially adaptive divergence among major drainages and along altitudinal gradients replicated in several rivers. Results The proportion of loci showing evidence of divergent selection was larger between drainages than along altitudinal transects within drainages. This suggests divergent selection is stronger between drainages, or adaptive divergence is constrained by gene flow among populations within drainages, although the latter could not be confirmed at a more local scale. Still, altitudinal divergence occurred and, at approximately 2% of the markers, parallel changes of the AFLP band frequencies with altitude were observed suggesting that altitude may well be an important source of divergent selection within rivers. Conclusions Our results indicate that adaptive genetic divergence is common both between major European river systems and along altitudinal gradients within drainages. Alpine trout appear to be a promising model system to investigate the relative roles of divergent selection and gene flow in promoting or preventing adaptation to climate gradients.
Resumo:
Additions of acid anions can alter the cycling of other nutrients and elements within an ecosystem. As strong acid ions move through a forest, they may increase the concentrations of nitrogen (N) and sulfur (S) in the soil solution and stream water. Such treatments also may increase or decrease the availability of other anions, cations and metal ions in the soil. A number of studies in Europe and North America have documented increases in base cation concentrations such as calcium (Ca) and magnesium (Mg) with increased N and S deposition (Foster and Nicolson 1988, Feger 1992, Norton et al. 1994, Adams et al. 1997, Currie et al. 1999, Fernandez et al. 2003). Experiments in Europe also have evaluated the response of forested watersheds to decreased deposition (Tietema et al. 1998, Lamersdorf and Borken 2004). In this chapter, we evaluate the effects of the watershed acidification treatment on the cycling of N, S, Ca, Mg and potassium (K) on Fernow WS3.
Resumo:
OBJECTIVE: Adequacy of organ perfusion depends on sufficient oxygen supply in relation to the metabolic needs. The aim of this study was to evaluate the relationship between gradients of free energy change, and the more commonly used parameter for the evaluation of the adequacy of organ perfusion, such as oxygen-extraction in patients undergoing valve replacement surgery using normothermic cardiopulmonary bypass (CPB). METHODS: In 43 cardiac patients, arterial, mixed venous, and hepato-venous blood samples were taken synchronously after induction of anaesthesia (preCPB), during CPB, and 2 and 7 h after admission to the intensive care unit (ICU+2, ICU+7). Blood gas analysis, cardiac output, and hepato-splanchnic blood flow were measured. Free energy change gradients between mixed venous and arterial (-deltadeltaG(v - a)) and hepato-venous and arterial (-deltadeltaG(hv - a)) compartments were calculated. MEASUREMENTS AND RESULTS: Cardiac index (CI) increased from 1.9 (0.7) to 2.8 (1.3) L/min/m (median, inter-quartile range) (p = 0.001), and hepato-splanchnic blood flow index (HBFI) from 0.6 (0.22) to 0.8 (0.53) L/min/m (p = 0.001). Despite increasing flow, systemic oxygen extraction increased after CPB from 24 (10)% to 35 (10)% at ICU+2 (p = 0.002), and splanchnic oxygen extraction increased during CPB from 37 (19)% to 52 (14)% (p = 0.001), and remained high thereafter. After CPB, high splanchnic and systemic gradients of free energy change gradients were associated with high splanchnic and systemic oxygen extraction, respectively (p = 0.001, 0.033, respectively). CONCLUSION: Gradients of free energy change may be helpful in characterising adequacy of perfusion in cardiac surgery patients independently from measurements or calculations of data from oxygen transport.
Resumo:
Two experiments were conducted with 30 dairy cows each, to study the preference for fresh (Experiment 1) and ensiled (Experiment 2) ryegrass, white and red clover. Both experiments consisted of three choice diets with white or red clover or both, offered with ryegrass, and two diets with ryegrass mixed with white or red clover (40% clover). Cows consumed diets with 37.7% fresh white and 45.9% red clover, and no preference was observed when the cows were offered all three forages. By contrast, cows preferred white and red clover silage (73.0 and 69.2%, respectively) over ryegrass silage (of lower nutritive quality). When offered three forages, cows preferred white (59.8%) over red clover (17.5%) and ryegrass (22.7%). Choice diets resulted in diets similar (fresh forages) or higher in nutrient content and digestibility (silages). Treatments did not affect feed intake and performance. Choices compared to mixed diets with red clover silage were preferable regarding the fatty acid composition of the milk fat. Obviously, only large differences in nutrient and energy concentration facilitate preferences for clovers over ryegrass, which could, depending on clover type, be beneficial in terms of the milk's fatty acid composition.
Resumo:
The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.
Resumo:
Excessive Cladophora growth in the Great Lakes has led to beach fouling and the temporary closure of nuclear power plants and has been associated with avian botulism and the persistence of human pathogens. As the growth-limiting nutrient for Cladophora, phosphorus is the appropriate target for management efforts. Dreissenids (zebra and quagga mussels) have the ability to capture particulate phase phosphorus (otherwise unavailable to Cladophora) and release it in a soluble, available form. The significance of this potential nutrient source is, in part, influenced by the interplay between phosphorus flux from the mussel bed and turbulent mixing in establishing the phosphorus levels to which Cladophora is exposed. It is hypothesized that under quiescent conditions phosphorus will accumulate near the sediment-water interface, setting up vertical phosphorus gradients and favorable conditions for resource delivery to Cladophora. These gradients would be eliminated under conditions of wind mixing, reducing the significance of the dreissenid-mediated nutrient contribution. Soluble reactive phosphorus (SRP) levels were monitored over dreissenid beds (densities on the order of 350•m-2 and 3000∙m-2) at a site 8 m deep in Lake Michigan. Monitoring was based on the deployment of Modified Hesslein Samplers which collected samples for SRP analysis over a distance of 34 cm above the bottom in 2.5 cm intervals. Deployment intervals were established to capture a wind regime (calm, windy) that persisted for an interval consistent with the sampler equilibration time of 7 hours. Results indicate that increased mussel density leads to an increased concentration boundary layer; increased wind speed leads to entrainment of the concentration boundary layer; and increased duration of quiescent periods leads to an increased concentration boundary layer. This concentration boundary layer is of ecological significance and forms in the region inhabited by Cladophora