840 resultados para nutrient demand
Resumo:
By 2030, the world’s human population could rise to 8 billion people and world food demand may increase by 50%. Although food production outpaced population growth in the 20th century, it is clear that the environmental costs of these increases cannot be sustained into the future. This challenges us to re-think the way we produce food. We argue that viewing food production systems within an ecosystems context provides the basis for 21st century food production. An ecosystems view recognises that food production systems depend on ecosystem services but also have ecosystem impacts. These dependencies and impacts are often poorly understood by many people and frequently overlooked. We provide an overview of the key ecosystem services involved in different food production systems, including crop and livestock production, aquaculture and the harvesting of wild nature. We highlight the important ecosystem impacts of food production systems, including habitat loss and degradation, changes to water and nutrient cycles across a range of scales, and biodiversity loss. These impacts often undermine the very ecosystem services on which food production systems depend, as well as other ecosystem services unrelated to food. We argue that addressing these impacts requires us to re-design food production systems to recognise and manage the limitations on production imposed by the ecosystems within which they are embedded, and increasingly embrace a more multifunctional view of food production systems and associated ecosystems. In this way, we should be able to produce food more sustainably whilst inflicting less damage on other important ecosystem services.
Effects of abomasal vegetable oil infusion on splanchnic nutrient metabolism in lactating dairy cows
Resumo:
Quadratic programming techniques were applied to household food consumption data in England and Wales to estimate likely changes in diet under healthy eating guidelines, and the consequences this would have on agriculture and land use in England and Wales. The first step entailed imposing nutrient restrictions on food consumption following dietary recommendations suggested by the UK Department of Health. The resulting diet was used, in a second step as a proxy for demand in agricultural commodities, to test the impact of such a scenario on food production and land use in England and Wales and the impacts of this on agricultural landscapes. Results of the diet optimisation indicated a large drop in consumption of foods rich in saturated fats and sugar, essentially cheese and sugar-based products, along with lesser cuts of fat and meat products. Conversely, consumption of fruit and vegetables, cereals, and flour would increase to meet dietary fibre recommendations. Such a shift in demand would dramatically affect production patterns: the financial net margin of England and Wales agriculture would rise, due to increased production of high market value and high economic margin crops. Some regions would, however, be negatively affected, mostly those dependent on beef cattle and sheep production that could not benefit from an increased demand for cereals and horticultural crops. The effects of these changes would also be felt in upstream industries, such as animal feed suppliers. While arable dominated landscapes would be little affected, pastoral landscapes would suffer through loss of grazing management and, possibly, land abandonment, especially in upland areas.
Resumo:
Nineteen wheat cultivars, released from 1934 to 2000, were grown at two organic and two non-organic sites in each of 3 years. Assessments included grain yield, grain protein concentration, protein yield, disease incidence and green leaf area. The superiority of each cultivar (the sum of the squares of the differences between its mean in each environment and the mean of the best cultivar there, divided by twice the number of environments; CS) was calculated for yield, grain protein concentration and protein yield, and ranked in each environment. The yield and grain protein concentration CS were more closely correlated with cultivar release date at the non-organic sites than at organic sites. This difference may be attributed to higher yield levels with larger differences among cultivars at the non-organic sites, rather than to improved stability (i.e. similar ranks) across sites. The significant difference in the correlation of protein yield CS and cultivar age between organic and non-organic sites would support evidence that the ability to take up mineral nitrogen (N) compared to soil N has been a component of the selection conditions of more modern cultivars (released after 1989). This is supported by assessment of green leaf area (GLA), where more modern cultivars in the non-organic systems had greater late-season GLA, a trend that was not identified in organic conditions. This effect could explain the poor correlation between age and protein yield CS in organic compared to non-organic conditions where modern cultivars are selected to benefit from later nitrogen (N) availability which includes the spring nitrogen applications tailored to coincide with peak crop demand. Under organic management, N release is largely based on the breakdown of fertility-building crops incorporated (ploughed-in) in the previous autumn. The release of nutrients from these residues is dependent on the soil conditions, which includes temperature and microbial populations, in addition to the potential leaching effect of high winter rainfall in the UK. In organic cereal crops, early resource capture is a major advantage for maximizing the utilization of nutrients from residue breakdown. It is concluded that selection of cultivars under conditions of high agrochemical inputs selects for cultivars that yield well under maximal conditions in terms of nutrient availability and pest, disease and weed control. The selection conditions for breeding have a tendency to select cultivars which perform relatively better in non-organic compared to organic systems.
Resumo:
The orthodox approach for incentivising Demand Side Participation (DSP) programs is that utility losses from capital, installation and planning costs should be recovered under financial incentive mechanisms which aim to ensure that utilities have the right incentives to implement DSP activities. The recent national smart metering roll-out in the UK implies that this approach needs to be reassessed since utilities will recover the capital costs associated with DSP technology through bills. This paper introduces a reward and penalty mechanism focusing on residential users. DSP planning costs are recovered through payments from those consumers who do not react to peak signals. Those consumers who do react are rewarded by paying lower bills. Because real-time incentives to residential consumers tend to fail due to the negligible amounts associated with net gains (and losses) or individual users, in the proposed mechanism the regulator determines benchmarks which are matched against responses to signals and caps the level of rewards/penalties to avoid market distortions. The paper presents an overview of existing financial incentive mechanisms for DSP; introduces the reward/penalty mechanism aimed at fostering DSP under the hypothesis of smart metering roll-out; considers the costs faced by utilities for DSP programs; assesses linear rate effects and value changes; introduces compensatory weights for those consumers who have physical or financial impediments; and shows findings based on simulation runs on three discrete levels of elasticity.
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
Over the last few years, load growth, increases in intermittent generation, declining technology costs and increasing recognition of the importance of customer behaviour in energy markets have brought about a change in the focus of Demand Response (DR) in Europe. The long standing programmes involving large industries, through interruptible tariffs and time of day pricing, have been increasingly complemented by programmes aimed at commercial and residential customer groups. Developments in DR vary substantially across Europe reflecting national conditions and triggered by different sets of policies, programmes and implementation schemes. This paper examines experiences within European countries as well as at European Union (EU) level, with the aim of understanding which factors have facilitated or impeded advances in DR. It describes initiatives, studies and policies of various European countries, with in-depth case studies of the UK, Italy and Spain. It is concluded that while business programmes, technical and economic potentials vary across Europe, there are common reasons as to why coordinated DR policies have been slow to emerge. This is because of the limited knowledge on DR energy saving capacities; high cost estimates for DR technologies and infrastructures; and policies focused on creating the conditions for liberalising the EU energy markets.
Resumo:
This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.
Resumo:
The relationship between income and nutrient intake is explored. Nonparametric, panel, and quantile regressions are used. Engle curves for calories, fat, and protein are approximately linear in logs with carbohydrate intakes exhibiting diminishing elasticities as incomes increase. Elasticities range from 0.10 to 0.25, with fat having the highest elasticities. Countries in higher quantiles have lower elasticities than those in lower quantiles. Results predict significant cumulative increases in calorie consumption which are increasingly composed of fats. Though policies aimed at poverty alleviation and economic growth may assuage hunger and malnutrition, they may also exacerbate problems associated with obesity.