887 resultados para nonlinear optimization problems
Resumo:
We show that the peak intensity of single attosecond x-ray pulses is enhanced by 1 or 2 orders of magnitude, the pulse duration is greatly compressed, and the optimal propagation distance is shortened by genetic algorithm optimization of the chirp and initial phase of 5 fs laser pulses. However, as the laser intensity increases, more efficient nonadiabatic self-phase matching can lead to a dramatically enhanced harmonic yield, and the efficiency of optimization decreases in the enhancement and compression of the generated attosecond pulses. (c) 2006 Optical Society of America.
Resumo:
The Northridge earthquake of January 17, 1994, highlighted the two previously known problems of premature fracturing of connections and the damaging capabilities of near-source ground motion pulses. Large ground motions had not been experienced in a city with tall steel moment-frame buildings before. Some steel buildings exhibited fracture of welded connections or other types of structural degradation.
A sophisticated three-dimensional nonlinear inelastic program is developed that can accurately model many nonlinear properties commonly ignored or approximated in other programs. The program can assess and predict severely inelastic response of steel buildings due to strong ground motions, including collapse.
Three-dimensional fiber and segment discretization of elements is presented in this work. This element and its two-dimensional counterpart are capable of modeling various geometric and material nonlinearities such as moment amplification, spread of plasticity and connection fracture. In addition to introducing a three-dimensional element discretization, this work presents three-dimensional constraints that limit the number of equations required to solve various three-dimensional problems consisting of intersecting planar frames.
Two buildings damaged in the Northridge earthquake are investigated to verify the ability of the program to match the level of response and the extent and location of damage measured. The program is used to predict response of larger near-source ground motions using the properties determined from the matched response.
A third building is studied to assess three-dimensional effects on a realistic irregular building in the inelastic range of response considering earthquake directivity. Damage levels are observed to be significantly affected by directivity and torsional response.
Several strong recorded ground motions clearly exceed code-based levels. Properly designed buildings can have drifts exceeding code specified levels due to these ground motions. The strongest ground motions caused collapse if fracture was included in the model. Near-source ground displacement pulses can cause columns to yield prior to weaker-designed beams. Damage in tall buildings correlates better with peak-to-peak displacements than with peak-to-peak accelerations.
Dynamic response of tall buildings shows that higher mode response can cause more damage than first mode response. Leaking of energy between modes in conjunction with damage can cause torsional behavior that is not anticipated.
Various response parameters are used for all three buildings to determine what correlations can be made for inelastic building response. Damage levels can be dramatically different based on the inelastic model used. Damage does not correlate well with several common response parameters.
Realistic modeling of material properties and structural behavior is of great value for understanding the performance of tall buildings due to earthquake excitations.
Optimization of high-order harmonic by genetic algorithm for the chirp and phase of few-cycle pulses
Resumo:
The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.
Resumo:
STEEL, the Caltech created nonlinear large displacement analysis software, is currently used by a large number of researchers at Caltech. However, due to its complexity, lack of visualization tools (such as pre- and post-processing capabilities) rapid creation and analysis of models using this software was difficult. SteelConverter was created as a means to facilitate model creation through the use of the industry standard finite element solver ETABS. This software allows users to create models in ETABS and intelligently convert model information such as geometry, loading, releases, fixity, etc., into a format that STEEL understands. Models that would take several days to create and verify now take several hours or less. The productivity of the researcher as well as the level of confidence in the model being analyzed is greatly increased.
It has always been a major goal of Caltech to spread the knowledge created here to other universities. However, due to the complexity of STEEL it was difficult for researchers or engineers from other universities to conduct analyses. While SteelConverter did help researchers at Caltech improve their research, sending SteelConverter and its documentation to other universities was less than ideal. Issues of version control, individual computer requirements, and the difficulty of releasing updates made a more centralized solution preferred. This is where the idea for Caltech VirtualShaker was born. Through the creation of a centralized website where users could log in, submit, analyze, and process models in the cloud, all of the major concerns associated with the utilization of SteelConverter were eliminated. Caltech VirtualShaker allows users to create profiles where defaults associated with their most commonly run models are saved, and allows them to submit multiple jobs to an online virtual server to be analyzed and post-processed. The creation of this website not only allowed for more rapid distribution of this tool, but also created a means for engineers and researchers with no access to powerful computer clusters to run computationally intensive analyses without the excessive cost of building and maintaining a computer cluster.
In order to increase confidence in the use of STEEL as an analysis system, as well as verify the conversion tools, a series of comparisons were done between STEEL and ETABS. Six models of increasing complexity, ranging from a cantilever column to a twenty-story moment frame, were analyzed to determine the ability of STEEL to accurately calculate basic model properties such as elastic stiffness and damping through a free vibration analysis as well as more complex structural properties such as overall structural capacity through a pushover analysis. These analyses showed a very strong agreement between the two softwares on every aspect of each analysis. However, these analyses also showed the ability of the STEEL analysis algorithm to converge at significantly larger drifts than ETABS when using the more computationally expensive and structurally realistic fiber hinges. Following the ETABS analysis, it was decided to repeat the comparisons in a software more capable of conducting highly nonlinear analysis, called Perform. These analyses again showed a very strong agreement between the two softwares in every aspect of each analysis through instability. However, due to some limitations in Perform, free vibration analyses for the three story one bay chevron brace frame, two bay chevron brace frame, and twenty story moment frame could not be conducted. With the current trend towards ultimate capacity analysis, the ability to use fiber based models allows engineers to gain a better understanding of a building’s behavior under these extreme load scenarios.
Following this, a final study was done on Hall’s U20 structure [1] where the structure was analyzed in all three softwares and their results compared. The pushover curves from each software were compared and the differences caused by variations in software implementation explained. From this, conclusions can be drawn on the effectiveness of each analysis tool when attempting to analyze structures through the point of geometric instability. The analyses show that while ETABS was capable of accurately determining the elastic stiffness of the model, following the onset of inelastic behavior the analysis tool failed to converge. However, for the small number of time steps the ETABS analysis was converging, its results exactly matched those of STEEL, leading to the conclusion that ETABS is not an appropriate analysis package for analyzing a structure through the point of collapse when using fiber elements throughout the model. The analyses also showed that while Perform was capable of calculating the response of the structure accurately, restrictions in the material model resulted in a pushover curve that did not match that of STEEL exactly, particularly post collapse. However, such problems could be alleviated by choosing a more simplistic material model.
Resumo:
Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.
Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.
The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.
Resumo:
This thesis presents methods for incrementally constructing controllers in the presence of uncertainty and nonlinear dynamics. The basic setting is motion planning subject to temporal logic specifications. Broadly, two categories of problems are treated. The first is reactive formal synthesis when so-called discrete abstractions are available. The fragment of linear-time temporal logic (LTL) known as GR(1) is used to express assumptions about an adversarial environment and requirements of the controller. Two problems of changes to a specification are posed that concern the two major aspects of GR(1): safety and liveness. Algorithms providing incremental updates to strategies are presented as solutions. In support of these, an annotation of strategies is developed that facilitates repeated modifications. A variety of properties are proven about it, including necessity of existence and sufficiency for a strategy to be winning. The second category of problems considered is non-reactive (open-loop) synthesis in the absence of a discrete abstraction. Instead, the presented stochastic optimization methods directly construct a control input sequence that achieves low cost and satisfies a LTL formula. Several relaxations are considered as heuristics to address the rarity of sampling trajectories that satisfy an LTL formula and demonstrated to improve convergence rates for Dubins car and single-integrators subject to a recurrence task.
Resumo:
Com o passar do tempo, a demanda elétrica de diversas áreas varia tornando necessária a construção de novos geradores elétricos e a expansão da rede de transmissão de energia elétrica. Nesta dissertação, focamos no problema de expansão da rede de transmissão, assumindo que novos geradores estão construídos para suprir as novas demandas. Essa expansão exige altos investimentos que precisam ser cuidadosamente planejados. O problema pode ser modelado como um problema de otimização não linear inteira mista e pertence à classe dos problemas NP-difíceis. Desta forma, uma abordagem heurística pode ser adequada para a sua solução pois pode vir a fornecer boas soluções em tempo computacional aceitável. Esta dissertação se propõe a apresentar um estudo do problema de planejamento da expansão de redes de transmissão de energia elétrica estático e multiestágio. Mostramos o que já existe na literatura para o que é chamado de problema sem redimensionamento e as inovações feitas por nós para o problema com redimensionamento. Quanto aos métodos de solução, utilizamos a metaheurística GRASP para o problema estático e combinamos o GRASP com o procedimento Backward-Forward quando falamos em problema multiestágio. Nesta dissertação comparamos os resultados computacionais obtidos com resultados encontrados na literatura.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution proxy records of climate, such as varves, ice cores, and tree-rings, provide the opportunity for reconstructing climate on a year-by-year basis. In order to do so it is necessary to approximate the complex nonlinear response function of the natural recording system using linear statistical models. Three problems with this approach were discussed, and possible solutions were suggested. Examples were given from a reconstruction of Santa Barbara precipitation based on tree-ring records from Santa Barbara County.
Resumo:
In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.
Resumo:
The application of automated design optimization to real-world, complex geometry problems is a significant challenge - especially if the topology is not known a priori like in turbine internal cooling. The long term goal of our work is to focus on an end-to-end integration of the whole CFD Process, from solid model through meshing, solving and post-processing to enable this type of design optimization to become viable & practical. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut- Cartesian mesh generator, RANS flow solver, post-processing & geometry editing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh guided by the underpinning Level Set. This paper extends this work still further with a simple scoping study showing how the basic functionality can be scripted & automated and then used as the basis for automated optimization of a generic gas turbine cooling geometry. Copyright © 2008 by W.N.Dawes.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
We discuss solvability issues of H_-/H_2/infinity optimal fault detection problems in the most general setting. A solution approach is presented which successively reduces the initial problem to simpler ones. The last computational step generally may involve the solution of a non-standard H_-/H_2/infinity optimization problem for which we discuss possible solution approaches. Using an appropriate definition of the H- index, we provide a complete solution of this problem in the case of H2-norm. Furthermore, we discuss the solvability issues in the case of H-infinity-norm.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.