916 resultados para neonatal stimulation
Resumo:
We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.
Resumo:
Oxygen therapy is essential for the treatment of some neonatal critical care conditions but its extrapulmonary effects have not been adequately investigated. We therefore studied the effects of various oxygen concentrations on intestinal epithelial cell function. In order to assess the effects of hyperoxia on the intestinal immunological barrier, we studied two physiological changes in neonatal rats exposed to hyperoxia: the change in intestinal IgA secretory component (SC, an important component of SIgA) and changes in intestinal epithelial cells. Immunohistochemistry and Western blot were used to detect changes in the intestinal tissue SC of neonatal rats. To detect intestinal epithelial cell growth, cells were counted, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Giemsa staining were used to assess cell survival. Immunohistochemistry was used to determine SC expression. The expression of intestinal SC in neonatal rats under hyperoxic conditions was notably increased compared with rats inhaling room air (P < 0.01). In vitro, 40% O2 was beneficial for cell growth. However, 60% O2 and 90% O2 induced rapid cell death. Also, 40% O2 induced expression of SC by intestinal epithelial cells, whereas 60% O2did not; however, 90% O2 limited the ability of intestinal epithelial cells to express SC. In vivo and in vitro, moderate hyperoxia brought about increases in intestinal SC. This would be expected to bring about an increase in intestinal SIgA. High levels of SC and SIgA would serve to benefit hyperoxia-exposed individuals by helping to maintain optimal conditions in the intestinal tract.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN) under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.
Resumo:
Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS) of umbilical cord blood (CB) and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r £ 0.20) or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.
Resumo:
This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.
Resumo:
Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.
Resumo:
The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction
Resumo:
The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA A receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.
Resumo:
N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.
Resumo:
Patients with clinical diseases often present psychiatric conditions whose pharmacological treatment is hampered due to hazardous interactions with the clinical treatment and/or disease. This is particularly relevant for major depressive disorder, the most common psychiatric disorder in the general hospital. In this context, nonpharmacological interventions could be useful therapies; and, among those, noninvasive brain stimulation (NIBS) might be an interesting option. The main methods of NIBS are repetitive transcranial magnetic stimulation (rTMS), which was recently approved as a nonresearch treatment for some psychiatric conditions, and transcranial direct current stimulation (tDCS), a technique that is currently limited to research scenarios but has shown promising results. Therefore, our aim was to review the main medical conditions associated with high depression rates, the main obstacles for depression treatment, and whether these therapies could be a useful intervention for such conditions. We found that depression is an important and prevalent comorbidity in a variety of diseases such as epilepsy, stroke, Parkinson's disease, myocardial infarction, cancer, and in other conditions such as pregnancy and in patients without enteral access. We found that treatment of depression is often suboptimal within the above contexts and that rTMS and tDCS therapies have been insufficiently appraised. We discuss whether rTMS and tDCS could have a significant impact in treating depression that develops within a clinical context, considering its unique characteristics such as the absence of pharmacological interactions, the use of a nonenteral route, and as an augmentation therapy for antidepressants.
Resumo:
Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.
Resumo:
Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.
Resumo:
There has been concern regarding the use of controversial paradigms for repetitive transcranial magnetic stimulation (rTMS) to manage treatment-resistant depression (TRD). This meta-analysis assessed the efficacy of bilateral rTMS compared with unilateral and sham rTMS in patients with TRD. PubMed, Embase, CENTRAL, PsycINFO, Web of Science, EAGLE and NTIS databases were searched to identify relevant studies, and randomized controlled trials (RCTs) on bilateral rTMS for TRD patients were included. The response was defined as the primary outcome, and remission was the secondary outcome. Ten RCTs that included 634 patients met the eligibility criteria. The risk ratio (RRs) of both the primary and secondary outcomes of bilateral rTMS showed non-significant increases compared to unilateral rTMS (RR=1.01, P=0.93; odds ratio [OR]=0.77, P=0.22). Notably, the RR of the primary bilateral rTMS outcome was significantly increased compared to that for sham rTMS (RR=3.43, P=0.0004). The results of our analysis demonstrated that bilateral rTMS was significantly more effective than sham rTMS but not unilateral rTMS in patients with TRD. Thus, bilateral rTMS may not be a useful paradigm for patients with TRD.
Resumo:
This study aimed to demonstrate that congenital diaphragmatic hernia (CDH) results in vascular abnormalities that are directly associated with the severity of pulmonary hypoplasia and hypertension. These events increase right ventricle (RV) afterload and may adversely affect disease management and patient survival. Our objective was to investigate cardiac function, specifically right ventricular changes, immediately after birth and relate them to myocardial histological findings in a CDH model. Pregnant New Zealand rabbits underwent the surgical procedure at 25 days of gestation (n=14). CDH was created in one fetus per horn (n=16), and the other fetuses were used as controls (n=20). At term (30 days), fetuses were removed, immediately dried and weighed before undergoing four-parameter echocardiography. The lungs and the heart were removed, weighed, and histologically analyzed. CDH animals had smaller total lung weight (P<0.005), left lung weight (P<0.005), and lung-to-body ratio (P<0.005). Echocardiography revealed a smaller left-to-right ventricle ratio (LV/RV, P<0.005) and larger diastolic right ventricle size (DRVS, P<0.007). Histologic analysis revealed a larger number of myocytes undergoing mitotic division (186 vs 132, P<0.05) in CDH hearts. Immediate RV dilation of CDH hearts is related to myocyte mitosis increase. This information may aid the design of future strategies to address pulmonary hypertension in CDH.