926 resultados para motile sperm
Resumo:
In a previous series of in vitro fertilization experiments with mice we found non-random combination of major histocompatibility complex (MHC) haplotypes in the very early embryos. Our results suggested that two selection mechanisms were operating: (i) the eggs selected specific sperm; and (ii) the second meiotic division in the eggs was influenced by the type of sperm that entered the egg. Furthermore, the proportion of MHC-heterozygous embryos varied over time, suggesting that non-random fertilization was dependent on an external factor that changed over time. As a higher frequency of heterozygous individuals correlated with an uncontrolled epidemic by MHV (mouse hepatitis virus), we suggested that MHV-infection might have influenced the outcome of fertilization. Here, we present an experiment that tests this hypothesis. We infected randomly chosen mice with MHV and sham-infected control mice five days before pairing. We recovered the two-cell embryos from the oviduct, cultured them until the blastocyst stage, and determined the genotype of each resulting blastocyst by polymerase chain reaction. We found the pattern that we expected from our previous experiments: virus-infected mice produced more MHC-heterozygous embryos than sham-infected ones. This suggests that parents are able to promote specific combinations of MHC-haplotypes during fertilization according to the presence or absence of a viral infection.
Resumo:
Genetic diversity benefits for social insect colonies headed by polyandrous queens have received intense attention, whereas sexual selection remains little explored. Yet mates of the same queen may engage in sperm competition over the siring of offspring, and this could confer benefits on queens if the most successful sire in each colony (the majority sire) produces gynes (daughter queens) of higher quality. These benefits could be increased if high-quality sires make queens increase the percentage of eggs that they fertilize (unfertilized eggs develop into sons in social hymenopterans), or if daughters of better genetic quality are over-represented in the gyne versus worker class. Such effects would lead to female-biased sex ratios in colonies with high-quality majority gynes. I tested these ideas in field colonies of Lasius niger black garden ants, using body mass of gynes as a fitness trait as it is known to correlate with future fecundity. Also, I established the paternity of gynes through microsatellite DNA offspring analyses. Majority sires did not always produce heavier gynes in L. niger, but whenever they did do so colonies produced more females, numerically and in terms of the energetic investment in female versus male production. Better quality sires may be able to induce queens to fertilize more eggs or so-called caste shunting may occur wherever the daughters of better males are preferentially shunted to into the gyne caste. My study supports that integrating sexual selection and social evolutionary studies may bring a deeper understanding of mating system evolution in social insects.
Resumo:
Environmental shifts and lifestyle changes may result in formerly adaptive traits becoming non-functional or maladaptive. The subsequent decay of such traits highlights the importance of natural selection for adaptations, yet its causes have rarely been investigated. To study the fate of formerly adaptive traits after lifestyle changes, we evaluated sexual traits in five independently derived asexual lineages, including traits that are specific to males and therefore not exposed to selection. At least four of the asexual lineages retained the capacity to produce males that display normal courtship behaviours and are able to fertilize eggs of females from related sexual species. The maintenance of male traits may stem from pleiotropy, or from these traits only regressing via drift, which may require millions of years to generate phenotypic effects. By contrast, we found parallel decay of sexual traits in females. Asexual females produced altered airborne and contact signals, had modified sperm storage organs, and lost the ability to fertilize their eggs, impeding reversals to sexual reproduction. Female sexual traits were decayed even in recently derived asexuals, suggesting that trait changes following the evolution of asexuality, when they occur, proceed rapidly and are driven by selective processes rather than drift.
Resumo:
Spermiogenesis and the ultrastructure of the spermatozoon of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Linnaeus, 1758), have been studied by means of transmission electron microscopy. Spermiogenesis involves firstly the formation of a differentiation zone. It is characterized by the presence of two centrioles associated with striated rootlets, an intercentriolar body and an electron-dense material in the apical region of this zone. Later, two flagella develop from the centrioles, growing orthogonally in relation to the median cytoplasmic process. Flagella then undergo a rotation of 90° until they become parallel to the median cytoplasmic process, followed by the proximodistal fusion of the flagella with the median cytoplasmic process. The nucleus elongates and afterwards it migrates along the spermatid body. Spermiogenesis finishes with the appearance of the apical cone surrounded by the single helical crested body at the base of the spermatid. Finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of C. crassiceps is filiform and contains two axonemes of the 9 + '1' trepaxonematan pattern, a parallel nucleus, parallel cortical microtubules, and electron-dense granules of glycogen. The anterior extremity of the gamete exhibits a short electron-dense apical cone and one crested body, which turns once around the sperm cell. The first axoneme is surrounded by a ring of thick cortical microtubules that persist until the appearance of the second axoneme. Later, these thick cortical microtubules disappear and thus, the mature spermatozoon exhibits two bundles of thin cortical microtubules. The posterior extremity of the male gamete presents only the nucleus. Results are discussed and compared particularly with the available ultrastructural data on the former 'pseudophyllideans'. Two differences can be established between spermatozoa of Bothriocephalidea and Diphyllobothriidea, the type of spermatozoon (II vs I) and the presence/absence of the ring of cortical microtubules.
Resumo:
Several studies over the last few years have shown that newly arising (de novo) mutations contribute to the genetics of schizophrenia (SZ), autism (ASD) and other developmental disorders. The strongest evidence comes from studies of de novo Copy Number Variation (CNV), where the rate of new mutations is shown to be increased in cases when compared to controls [23, 24]. Research on de novo point mutations and small insertion-deletions (indels) has been more limited, but with the development of next-generation sequencing (NGS) technology, such studies are beginning to provide preliminary evidence that de novo single-nucleotide mutations (SNVs) might also increase risk of SZ and ASD [25, 26] Advanced paternal age is a major source of new mutations in human beings [27] and could thus be associated with increased risk for developing SZ, ASD or other developmental disorders. Indeed, advanced paternal age is found to be a risk factor for developing SZ and ASD in the offspring [28, 29] and new mutations related to advanced paternal age have been implicated as a cause of sporadic cases in several autosomal dominant diseases, some neurodevelopmental diseases, including SZ and ASD, and social functioning. New single-base substitutions occur at higher rates at males compared to females and this difference increases with paternal age. This is due to the fact that sperm cells go through a much higher number of cell divisions (~840 by the age of 50), which increases the risk for DNA copy errors in the male germ line [30] . By contrast, the female eggs (oocytes) undergo only 24 cell divisions and all but the last occur during foetal life. The aim of my project is to determine the parent-of-origin of de novo SNVs, using large samples of parent-offspring trios affected with schizophrenia (SZ). From whole exome sequencing of 618 Bulgarian proband-offspring trios affected, nearly 1000 de novo (SNVs or small indels) have been identified and from these, the parent-of-origin of at least 60% of the mutations (N=600) can be established. This project is contained in a main one that consists on the determination of the parental origin of different types of de novo mutations (SNVs, small indels and large CNVs).
Resumo:
During the first two trimesters of intrauterine life, fetal sex steroid production is driven by maternal human chorionic gonadotropin (hCG). The HPG axis is activated around the third trimester and remains active for the first 6-months of neonatal life. This so-called mini-puberty is a developmental window that has profound effects on future potential for fertility. In early puberty, GnRH secretion is reactivated first at night and then night and day. Pulsatile GnRH stimulates both LH and FSH, which induce maturation of the seminiferous tubules and Leydig cells. Congenital hypogonadotropic hypogonadism (CHH) results from GnRH deficiency. Men with CHH lack the mini-pubertal and pubertal periods of Sertoli Cell proliferation and thus present with prepubertal testes (<4mL) and low inhibin serum levels --reflecting diminished SC numbers. To induce full maturation of the testes, GnRH-deficient patients can be treated with either pulsatile GnRH, hCG or combined gonadotropin therapy (FSH+hCG). Fertility outcomes with each of these regimens are highly variable. Recently, a randomized, open label treatment study (n=13) addressed the question of whether a sequential treatment with FSH alone prior to LH and FSH (via GnRH pump) could enhance fertility outcomes. All men receiving the sequential treatment developed sperm in the ejaculate, whereas 2/6 men in the other group remained azoospermic. A large, multicenter clinical trial is needed to definitively prove the optimal treatment approach for severe CHH.
Resumo:
Soy and soy-based products are widely consumed by infants and adult individuals. There has been speculation that the presence of isoflavone phytoestrogens in soybean cause adverse effects on the development and function of the male reproductive system. The purpose of this study was to examine the influence of dietary soy and phytoestrogens on testicular and reproductive functions. Male mice were fed from conception to adulthood with either a high soy-containing diet or a soy-free diet. Although adult mice fed a soy-rich diet exhibited normal male behaviour and were fertile, we observed a reduced proportion of haploid germ cells in testes correlating with a 25% decrease in epididymal sperm counts and a 21% reduction in litter size. LH and androgens levels were not affected but transcripts coding for androgen-response genes in Sertoli cells and Gapd-s, a germ cell-specific gene involved in sperm glycolysis and mobility were significantly reduced. In addition, we found that dietary soy decreased the size of the seminal vesicle but without affecting its proteolytic activity. Taken together, these studies show that long-term exposure to dietary soy and phytoestrogens may affect male reproductive function resulting in a small decrease in sperm count and fertility.
Resumo:
The present work constitutes the first ultrastructural analysis of the spermatozoon in the Pleurogenidae, with the study of three species belonging to three of the 16 genera included in this family, namely Pleurogenes claviger, Pleurogenoides medians and Prosotocus confusus. The mature spermatozoa of these pleurogenids present two axonemes of the 9+'1' trepaxonematan pattern, a nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation, spine-like bodies and granules of glycogen. The organization of these characters in the sperm cell is similar in the three species. Thus, the anterior spermatozoon extremity is filiform and a continuous and submembranous layer of parallel cortical microtubules surrounds the axonemes at their anterior end. The posterior spermatozoon extremity exhibits the second axoneme and corresponds to the Cryptogonimidean type of Quilichini et al. (2010). Slight differences were noted between the spermatozoon of P. confusus and those of the two remaining species in the location of mitochondria.
Resumo:
The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.
Resumo:
The capacity of fungi to serve as vectors for the dispersion of pollutant-degrading bacteria was analyzed in laboratory model systems mimicking water-saturated (agar surfaces) and unsaturated soil environments (glass-bead-filled columns). Two common soil fungi (Fusarium oxysporum and Rhexocercosporidium sp.) forming hydrophilic and hydrophobic mycelia, respectively, and three polycyclic aromatic hydrocarbon degrading bacteria (Achromobacter sp. SK1, Mycobacterium frederiksbergense LB501TG, and Sphingomonas sp. L138) were selected based on the absence of mutual antagonistic effects. It was shown that fungal hyphae act as vectors for bacterial transport with mobilization strongly depending on the specific microorganisms chosen: The motile strain Achromobacter sp. SK1 was most efficiently spread along hyphae of hydrophilic F. oxysporum in both model systems with transport velocities of up to 1 cm d(-1), whereas no dispersion of the two nonmotile strains was observed in the presence of F. oxysporum. By contrast, none of the bacteria was mobilized along the hydrophobic mycelia of Rhexocercosporidium sp. growing on agar surfaces. In column experiments however, strain SK1 was mobilized by Rhexocercosporidium sp. It is hypothesized that bacteria may move by their intrinsic motilitythrough continuous (physiological) liquid films forming around fungal hyphae. The results of this study suggest that the specific stimulation of indigenous fungi may be a strategy to mobilize pollutant-degrading bacteria leading to their homogenization in polluted soil thereby improving bioremediation.
Resumo:
Recently, we examined the spermatogenesis cycle length in two shrews species, Sorex araneus characterized by a very high metabolic rate and a polyandric mating system (sperm competition) resulting in a short cycle and Crocidura russula characterized by a much lower metabolic rate and a monogamous mating system showing a longer cycle. In this study, we investigated the spermatogenesis cycle in Neomys fodiens showing an intermediate metabolic rate. We described the stages of seminiferous epithelium according to the spermatid morphology method and we calculated the cycle length of spermatogenesis using incorporation of 5-bromodeoxyuridine into DNA of the germ cells. Twelve males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determination, we applied a recently developed statistical method. The calculated cycle length is 8.69 days and the total duration of spermatogenesis based on 4.5 cycles is approximately 39.1 days, intermediate between the duration of spermatogenesis of S. araneus (37.6 days) and C. russula (54.5 days) and therefore congruent with both the metabolic rate hypothesis and the sperm competition hypothesis. Relative testes size of 1.4% of body mass indicates a promiscuous mating system.
Resumo:
The aim of the present study was to determinate the cycle length of spermatogenesis in three species of shrew, Suncus murinus, Sorex coronatus and Sorex minutus, and to assess the relative influence of variation in basal metabolic rate (BMR) and mating system (level of sperm competition) on the observed rate of spermatogenesis, including data of shrew species studied before (Sorex araneus, Crocidura russula and Neomys fodiens). The dynamics of sperm production were determined by tracing 5-bromodeoxyuridine in the DNA of germ cells. As a continuous scaling of mating systems is not evident, the level of sperm competition was evaluated by the significantly correlated relative testis size (RTS). The cycle durations estimated by linear regression were 14.3 days (RTS 0.3%) in Suncus murinus, 9.0 days (RTS 0.5%) in Sorex coronatus and 8.5 days (RTS 2.8%) in Sorex minutus. In regression and multiple regression analyses including all six studied species of shrew, cycle length was significantly correlated with BMR (r2=0.73) and RTS (r2=0.77). Sperm competition as an ultimate factor obviously leads to a reduction in the time of spermatogenesis in order to increase sperm production. BMR may act in the same way, independently or as a proximate factor, revealed by the covariation, but other factors (related to testes size and thus to mating system) may also be involved.
Resumo:
Spermatological characters of the liver fluke Mediogonimus jourdanei Mas-Coma et Rocamora, 1978 were studied by means of transmission and scanning electron microscopy. Spermiogenesis begins with the formation of the differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. These two centrioles originate two free flagella that undergo a 90 degrees rotation before fusing with the median cytoplasmic process. Both nuclear and mitochondrial migrations toward the median cytoplasmic process occur before the proximodistal fusion of flagella. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon. The mature sperm of M. jourdanei measures about 260 microm and presents two axonemes of different lengths with the typical pattern of the Trepaxonemata, two bundles of parallel cortical microtubules, one mitochondrion, a nucleus and granules of glycogen. An analysis of all the microphalloidean species studied to date emphasised some differences in certain characters found in Maritrema linguilla Jägerskiöld, 1908 and Ganeo tigrinum Mehra et Negi, 1928 in comparison to those in the remaining microphalloideans. The presence and variability of such ultrastructural characters according to family, superfamily or order have led several authors to propose their use in the analysis of trematode relationships and phylogeny. Therefore, apart from producing new data on the family Prosthogonimidae, the present study also compares the spermatological organization of M jourdanei with other available ultrastructural studies focusing on the Microphalloidea.
Resumo:
Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.
Resumo:
The reversal of congenital hypogonadotropic hypogonadism (CHH) is a relatively recent phenomenon that has gained increasing attention over the past 10 years. Yet to date, only one prospective study has been conducted estimating that 10% (95% confidence interval [CI]: 2%-18%) of cases undergo reversal. [1] Other retrospective studies have reported rates in the range of 5%-8% [2],[3] and a recent study showed 44/308 (14%, 95% CI: 11%-19%) CHH patients underwent reversal. [4] Moreover, a time-to-event analysis in this large cohort revealed a lifetime reversal incidence of 22%. The article by Mao and colleagues presented in this issue is a meaningful contribution to our understanding of reversal as it examines the largest retrospective cohort to date. [5] Interestingly, they report the rate of reversal as 5% (95% CI: 3%-8%) in this Chinese cohort. It is difficult to reconcile the discrepancies in rates of reversibility and direct comparisons are hampered by the variable definitions employed. Using a novel definition for reversal (i.e, either endogenous testosterone (T) >270 ng dl−1 , serum T gradually increasing above 150 ng dl−1 with increased testicular volume, or normal spontaneous sperm production/normal erectile function/ejaculation), Mao and colleagues posit that testicular size and triptorelin-stimulated LH levels are reliable predictive factors for reversal. However, these cannot be considered as hard and fast rules for predicting reversal as the groups intersect - akin to the overlap observed between CHH patients and those with delayed puberty. Indeed, the fact that approximately half (44%, 95% CI: 25%-66%) of the reversal patients in the study by Mao et al.[5] were diagnosed between 17 and 19 years of age, underscores the challenge in differentiating CHH from extreme normal variants of puberty. This study further lends credence the recently reported observations that reversals may relapse. [4],[6] The notion that reversal may not be lasting highlights the vulnerability of the reproductive axis among CHH patients. While the mechanism(s) for relapse are unclear, it seems plausible that environmental, metabolic or psychiatric stressors could contribute. The factors that Mao and colleagues identify as significantly different in cases of reversal, were not informative for identifying those cases that relapsed back to a hypogonadal state. Notably, reversal has been reported in probands harboring mutations in genes underlying CHH. [1],[3],[4],[6] Unfortunately, comprehensive genetic screening on the Chinese cohort is not available. The reversal phenomenon is fascinating for its glimpse into the plasticity of the neuroendocrine control of reproduction. Future directions will almost certainly include investigation of specific genetic signatures and novel biomarkers for predicting reversal (and relapse). Yet CHH is a rare condition and to fully elucidate the biology of reversible CHH, it will be important to harmonize definitions of what constitutes a reversal, carefully phenotype patients and chart the natural history of their CHH. In this way, this unique human disease model may offer further insights into the control of human reproduction and provide opportunities to translate discoveries into enhanced approaches to improve the care and quality of life for these patients.