964 resultados para molecular mechanisms
Resumo:
Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2.
Resumo:
PURPOSE OF REVIEW: Previous studies have shown that a variety of specific renal functions exhibit circadian oscillations. This review aims to provide an update on the molecular mechanisms underlying circadian rhythms in the kidney, and to discuss how dysregulation of circadian rhythms can interfere with kidney function. RECENT FINDINGS: The molecular mechanism responsible for generating and maintaining circadian rhythms has been unraveled in great detail. This mechanism, known as the circadian clock, drives circadian oscillation in expression levels of a large number of renal mRNA transcripts. Several proteins critically involved in renal homeostatic functions have been shown to exhibit significant circadian oscillation in their expression levels or in their posttranslational modifications. In transgenic mouse models, disruption of circadian clock activity results in dramatic changes in the circadian pattern of urinary sodium and potassium excretion and causes significant changes in arterial blood pressure. A growing amount of evidence suggests that dysregulation of circadian rhythms is associated with the development of hypertension and accelerated progression of chronic kidney disease and cardiovascular disease in humans. Chronotherapy studies have shown that the efficacy of antihypertensive medication is greatly dependent on the circadian time of drug administration. SUMMARY: Recent research points to the major role of circadian rhythms in renal function and in control of blood pressure.
Resumo:
Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.
Resumo:
The mode of action of nuclear receptors in living cells is an actively investigated field but much remains hypothetical due to the lack, until recently, of methods allowing the assessment of molecular mechanisms in vivo. However, these last years, the development of fluorescence microscopy methods has allowed initiating the dissection of the molecular mechanisms underlying gene regulation by nuclear receptors directly in living cells or organisms. Following our analyses on peroxisome proliferator activated receptors (PPARs) in living cells, we discuss here the different models arising from the use of these tools, that attempt to link mobility, DNA binding or chromatin interaction, and transcriptional activity.
Resumo:
In plants, an oligogene family encodes NADP-malic enzymes (NADP-me), which are responsible for various functions and exhibit different kinetics and expression patterns. In particular, a chloroplast isoform of NADP-me plays a key role in one of the three biochemical subtypes of C4 photosynthesis, an adaptation to warm environments that evolved several times independently during angiosperm diversification. By combining genomic and phylogenetic approaches, this study aimed at identifying the molecular mechanisms linked to the recurrent evolutions of C4-specific NADP-me in grasses (Poaceae). Genes encoding NADP-me (nadpme) were retrieved from genomes of model grasses and isolated from a large sample of C3 and C4 grasses. Genomic and phylogenetic analyses showed that 1) the grass nadpme gene family is composed of four main lineages, one of which is expressed in plastids (nadpme-IV), 2) C4-specific NADP-me evolved at least five times independently from nadpme-IV, and 3) some codons driven by positive selection underwent parallel changes during the multiple C4 origins. The C4 NADP-me being expressed in chloroplasts probably constrained its recurrent evolutions from the only plastid nadpme lineage and this common starting point limited the number of evolutionary paths toward a C4 optimized enzyme, resulting in genetic convergence. In light of the history of nadpme genes, an evolutionary scenario of the C4 phenotype using NADP-me is discussed.
Resumo:
Death of sensory hair cells in the inner ear results in two global health problems that millions of people around the world suffer: hearing loss and balance disorders. Hair cells convert sound vibrations and head movements into electrical signals that are conveyed to the brain, and as a result of aging, exposure to noise, modern drugs or genetic predisposition, hair cells die. In mammals, the great majority of hair cells are produced during embryogenesis, and hair cells that are lost after birth are not replaceable. However, in the last decades, researches have shown some model organisms that retain the ability to regenerate hair cells damaged after embryogenesis, such as Zebrafish and chicken, providing clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. This discovery initiated a search for methods to stimulate regeneration or replacement of hair cells in mammals, a search that, if fruitful, will revolutionize the treatment of hearing loss and balance disorders. One aim of my project is to study the role of retinoic acid in adult Zebrafish and in mice, which is a metabolite of vitamin A known as an essential molecule to activate hair cell regeneration after cells damaged in Zebrafish embryo. We want to study important genes involved in retinoic acid pathway, such as Aldh1a3 and RARs genes, to check what their role is in the inner ear of adult Zebrafish and compare result obtained in the inner ear of mice. On the other hand, Zebrafish lateral line contains neuromast, which are formed by the same structure than the inner ear: hair cells surrounded by supporting cells and neurons. The lateral line is a structure below the skin's surface that makes easier to damage hair cells to study their regeneration. For that reason, another aim of my project is to study how Sox2 and Atoh1, essential genes during the inner ear development, change their expression during hair cell regeneration in the lateral line. In my project, the most important concepts related to Zebrafish world are explained in order to understand why we have studied this animal and these essential genes. Then, techniques that we used are explained, with their protocol attached in the annexes. Finally, results of my project are shown, but many of them were not expected and they would be needed to follow studying.
Resumo:
RESUME LARGE PUBLIC Le système nerveux central est principalement composé de deux types de cellules :les neurones et les cellules gliales. Ces dernières, bien que l'emportant en nombre sur les neurones, ont longtemps été considérées comme des cellules sans intérêts par les neuroscientifiques. Hors, les connaissances modernes à leurs sujets indiquent qu'elles participent à la plupart des tâches physiologiques du cerveau. Plus particulièrement, elles prennent part aux processus énergétiques cérébraux. Ceux-ci, en plus d'être vitaux, sont particulièrement intrigants puisque le cerveau représente seulement 2 % de la masse corporelle mais consomme environ 25 % du glucose (substrat énergétique) corporel. Les astrocytes, un type de cellules gliales, jouent un rôle primordial dans cette formidable utilisation de glucose par le cerveau. En effet, l'activité neuronale (transmission de l'influx nerveux) est accompagnée d'une augmentation de la capture de glucose, issu de la circulation sanguine, par les astrocytes. Ce phénomène est appelé le «couplage neurométabolique » entre neurones et astrocytes. L'ion sodium fait partie des mécanismes cellulaires entrant en fonction lors de ces processus. Ainsi, dans le cadre de cette thèse, les aspects dynamiques de la régulation du sodium astrocytaire et leurs implications dans le couplage neurométabolique ont été étudiés par des techniques d'imagerie cellulaires. Ces études ont démontré que les mitochondries, machineries cellulaires convertissant l'énergie contenue dans le glucose, participent à la régulation du sodium astrocytaire. De plus, ce travail de thèse a permis de découvrir que les astrocytes sont capables de se transmettre, sous forme de vagues de sodium se propageant de cellules en cellules, un message donnant l'ordre d'accroître leur consommation d'énergie. Cette voie de signalisation leur permettrait de fournir de l'énergie aux neurones suite à leur activation. RESUME Le glutamate libéré dans la fente synaptique pendant l'activité neuronale, est éliminé par les astrocytes environnants. Le glutamate est co-transporté avec des ions sodiques, induisant une augmentation intracellulaire de sodium (Na+i) dans les astrocytes. Cette élévation de Na+i déclenche une cascade de mécanismes moléculaires qui aboutissent à la production de substrats énergétiques pouvant être utilisés par les neurones. Durant cette thèse, la mesure simultanée du sodium mitochondrial (Na+mit) et cytosolique par des techniques d'imagerie utilisant des sondes fluorescentes spécifiques, a indiqué que les variations de Na+i induites par le transport du glutamate sont transmises aux mitochondries. De plus, les voies d'entrée et de sortie du sodium mitochondrial ont été identifiées. L'échangeur de Na+ et de Ca2+ mitochondrial semble jouer un rôle primordial dans l'influx de Na+mit, alors que l'efflux de Na+mit est pris en charge par l'échangeur de Na+ et de H+ mitochondrial. L'étude du Na+mit a nécessité l'utilisation d'un système de photoactivation. Les sources de lumière ultraviolette (UV) classiques utilisées à cet effet (lasers, lampes à flash) ayant plusieurs désavantages, une alternative efficace et peu coûteuse a été développée. Il s'agit d'un système compact utilisant une diode électroluminescente (LED) à haute puissance et de longueur d'onde de 365nm. En plus de leurs rôles dans le couplage neurométabolique, les astrocytes participent à la signalisation multicellulaire en transmettant des vagues intercellulaires de calcium. Ce travail de thèse démontre également que des vagues intercellulaires de sodium peuvent être évoquées en parallèle à ces vagues calciques. Le glutamate, suite à sa libération par un mécanisme dépendent du calcium, est réabsorbé par les transporteurs au glutamate. Ce mécanisme a pour conséquence la génération de vagues sodiques se propageant de cellules en cellules. De plus, ces vagues sodiques sont corrélées spatialement avec une consommation accrue de glucose par les astrocytes. En conclusion, ce travail de thèse a permis de montrer que le signal sodique astrocytaire, déclenché en réponse au glutamate, se propage à la fois de façon intracellulaire aux mitochondries et de façon intercellulaire. Ces résultats suggèrent que les astrocytes fonctionnent comme un réseau de cellules nécessaire au couplage énergétique concerté entre neurones et astrocytes et que le sodium est un élément clé dans les mécanismes de signalisations cellulaires sous-jacents. SUMMARY Glutamate, released in the synaptic cleft during neuronal activity, is removed by surrounding astrocytes. Glutamate is taken-up with Na+ ions by specific transporters, inducing an intracellular Na+ (Na+i) elevation in astrocytes which triggers a cascade of molecular mechanisms that provides metabolic substrates to neurons. Thus, astrocytic Na+i homeostasis represents a key component of the so-called neurometabolic coupling. In this context, the first part of this thesis work was aimed at investigating whether cytosolic Na+ changes are transmitted to mitochondria, which could therefore influence their function and contribute to the overall intracellular Na+ regulation. Simultaneous monitoring of both mitochondrial Na+ (Na+mit) and cytosolic Na+ changes with fluorescent dyes revealed that glutamate-evoked cytosolic Na+ elevations are indeed transmitted to mitochondria. The mitochondrial Na+/Ca2+ exchangers have a prominent role in the regulation of Na+mit influx pathway, and Na+mit extrusion appears to be mediated by Na+/H+ exchangers. To demonstrate the implication of Na+/Ca2+ exchangers, this study has required the technical development of an UV-flash photolysis system. Because light sources for flash photolysis have to be powerful and in the near UV range, the use of UV lasers or flash lamps is usually required. As an alternative to these UV sources that have several drawbaks, we developped a compact, efficient and lowcost flash photolysis system which employs a high power 365nm light emitting diode. In addition to their role in neurometabolic coupling, astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. The third part of this thesis show that intercellular Na+ waves can be evoked in parallel to Ca2+ waves. Glutamate released by a Ca2+ wave-dependent mechanism is taken up by glutamate transporters, resulting in a regenerative propagation of cytosolic Na+ increases. Na+ waves in turn lead to a spatially correlated increase in glucose uptake. In conclusion, the present thesis demonstrates that glutamate-induced Na+ changes occurring in the cytosol of astrocytes propagate to both the mitochondrial matrix and the astrocytic network. These results furthermore support the view that astrocytic Na+ is a signal coupled to the brain energy metabolism.
Resumo:
Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the BCL2 family that is deregulated in various solid and hematological malignancies. However, its role in the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL) is unclear. We analyzed gene expression profiling data from 350 DLBCL patient samples and detected that activated B-cell-like (ABC) DLBCLs express MCL1 at significantly higher levels compared with germinal center B-cell-like DLBCL patient samples (P=2.7 × 10(-10)). Immunohistochemistry confirmed high MCL1 protein expression predominantly in ABC DLBCL in an independent patient cohort (n=249; P=0.001). To elucidate molecular mechanisms leading to aberrant MCL1 expression, we analyzed array comparative genomic hybridization data of 203 DLBCL samples and identified recurrent chromosomal gains/amplifications of the MCL1 locus that occurred in 26% of ABC DLBCLs. In addition, aberrant STAT3 signaling contributed to high MCL1 expression in this subtype. Knockdown of MCL1 as well as treatment with the BH3-mimetic obatoclax induced apoptotic cell death in MCL1-positive DLBCL cell lines. In summary, MCL1 is deregulated in a significant fraction of ABC DLBCLs and contributes to therapy resistance. These data suggest that specific inhibition of MCL1 might be utilized therapeutically in a subset of DLBCLs.
Resumo:
The skin is privileged because several skin-derived stem cells (epithelial stem cells from epidermis and its appendages, mesenchymal stem cells from dermis and subcutis, melanocyte stem cells) can be efficiently captured for therapeutic use. Main indications remain the permanent coverage of extensive third degree burns and healing of chronic cutaneous wounds, but recent advances in gene therapy technology open the door to the treatment of disabling inherited skin diseases with genetically corrected keratinocyte stem cells. Therapeutic skin stem cells that were initially cultured in research or hospital laboratories must be produced according strict regulatory guidelines, which ensure patients and medical teams that the medicinal cell products are safe, of constant quality and manufactured according to state-of-the art technology. Nonetheless, it does not warrant clinical efficacy and permanent engraftment of autologous stem cells remains variable. There are many challenges ahead to improve efficacy among which to keep telomere-dependent senescence and telomere-independent senescence (clonal conversion) to a minimum in cell culture and to understand the cellular and molecular mechanisms implicated in engraftment. Finally, medicinal stem cells are expansive to produce and reimbursement of costs by health insurances is a major concern in many countries.
Resumo:
Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by the sw3 gene. Here we report that histone H1 variants exist in different Leishmania species and strains of L. major and that they are encoded by polymorphic genes. Amplification of the sw3 gene from the genome of three strains of L. major gave rise to different products in each strain, suggesting the presence of a multicopy gene family. In L. major, these genes were all restricted to a 50-kb Bg/II fragment found on a chromosomal band of 1.3 Mb (chromosome 27). The detection of RFLPs in this locus demonstrated its heterogeneity within several species and strains of Leishmania. Two different copies of sw3 (sw3.0 and sw3.1) were identified after screening a cosmid library containing L. major strain Friedlin genomic DNA. They were identical in their 5' UTRs and open reading frames, but differed in their 3' UTRs. With respect to the originally cloned copy of sw3 from L. major strain LV39, their open reading frames lacked a repeat unit of 9 amino acids. Immunoblots of L. guyanensis parasites transfected with these cosmids revealed that both copies could give rise to the histone H1 protein. The characterization of this locus will now make possible a detailed analysis of the function of histone H1 in Leishmania, as well as permit the dissection of the molecular mechanisms governing the developmental regulation of the sw3 gene.
Resumo:
The recognition that nutrients have the ability to interact and modulate molecular mechanisms underlying an organism's physiological functions has prompted a revolution in the field of nutrition. Performing population-scaled epidemiological studies in the absence of genetic knowledge may result in erroneous scientific conclusions and misinformed nutritional recommendations. To circumvent such issues and more comprehensively probe the relationship between genes and diet, the field of nutrition has begun to capitalize on both the technologies and supporting analytical software brought forth in the post-genomic era. The creation of nutrigenomics and nutrigenetics, two fields with distinct approaches to elucidate the interaction between diet and genes but with a common ultimate goal to optimize health through the personalization of diet, provide powerful approaches to unravel the complex relationship between nutritional molecules, genetic polymorphisms, and the biological system as a whole. Reluctance to embrace these new fields exists primarily due to the fear that producing overwhelming quantities of biological data within the confines of a single study will submerge the original query; however, the current review aims to position nutrigenomics and nutrigenetics as the emerging faces of nutrition that, when considered with more classical approaches, will provide the necessary stepping stones to achieve the ambitious goal of optimizing an individual's health via nutritional intervention.
Resumo:
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.
Resumo:
Transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha) often exhibit antagonistic actions on the regulation of various activities such as immune responses, cell growth, and gene expression. However, the molecular mechanisms involved in the mutually opposing effects of TGF-beta and TNF-alpha are unknown. Here, we report that binding sites for the transcription factor CTF/NF-I mediate antagonistic TGF-beta and TNF-alpha transcriptional regulation in NIH3T3 fibroblasts. TGF-beta induces the proline-rich transactivation domain of specific CTF/NF-I family members, such as CTF-1, whereas TNF-alpha represses both the uninduced as well as the TGF-beta-induced CTF-1 transcriptional activity. CTF-1 is thus the first transcription factor reported to be repressed by TNF-alpha. The previously identified TGF-beta-responsive domain in the proline-rich transcriptional activation sequence of CTF-1 mediates both transcriptional induction and repression by the two growth factors. Analysis of potential signal transduction intermediates does not support a role for known mediators of TNF-alpha action, such as arachidonic acid, in CTF-1 regulation. However, overexpression of oncogenic forms of the small GTPase Ras or of the Raf-1 kinase represses CTF-1 transcriptional activity, as does TNF-alpha. Furthermore, TNF-alpha is unable to repress CTF-1 activity in NIH3T3 cells overexpressing ras or raf, suggesting that TNF-alpha regulates CTF-1 by a Ras-Raf kinase-dependent pathway. Mutagenesis studies demonstrated that the CTF-1 TGF-beta-responsive domain is not the primary target of regulatory phosphorylations. Interestingly, however, the domain mediating TGF-beta and TNF-alpha antagonistic regulation overlapped precisely the previously identified histone H3 interaction domain of CTF-1. These results identify CTF-1 as a molecular target of mutually antagonistic TGF-beta and TNF-alpha regulation, and they further suggest a molecular mechanism for the opposing effects of these growth factors on gene expression.
Resumo:
Pharmacologic agents that target protein products of oncogenes in tumors are playing an increasing clinical role in the treatment of cancer. Currently, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. Subsequently other genetic abnormalities with "driver" characteristics - implying transforming and tumor maintenance capabilities have been extensively reported in several small distinct subsets of NSCLC. Among these rare genetic changes, anaplastic lymphoma kinase (ALK) gene rearrangements, most often consisting in a chromosome 2 inversion leading to a fusion with the echinoderm microtubule-associated protein like 4 (EML4) gene, results in the abnormal expression and activation of this tyrosine kinase in the cytoplasm of cancer cells. This rearrangement occurs in 2-5% of NSCLC, predominantly in young (50 years or younger), never- or former-smokers with adenocarcinoma. This aberration most commonly occurs a independently of EGFR and KRAS gene mutations. A fluorescent in situ hybridization assay was approved by the US Food and Drug Administration (FDA) as the standard method for the detection of ALK gene rearrangement in clinical practice and is considered the gold standard. Crizotinib, a first-in-class dual ALK and c-MET inhibitor, has been shown to be particularly effective against ALK positive NSCLC, showing dramatic and prolonged responses with low toxicity, predominantly restricted to the gastro-intestinal and visual systems, and generally self-limiting or easily managed. However, resistance to crizotinib inevitably emerges. The molecular mechanisms of resistance are currently under investigation, as are therapeutic approaches including crizotinib-based combination therapy and novel agents such as Hsp90 inhibitors. This review aims to present the current knowledge on this fusion gene, the clinic-pathological profile of ALK rearranged NSCLC, and to review the existing literature on ALK inhibitors, focusing on their role in the treatment of NSCLC.
Resumo:
The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, we developed an electrochemical in vivo gene delivery method to rapidly manipulate gene expression specifically in postmitotic neurons. Using this approach, we found that the molecular identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny neurons could be specifically reprogrammed during the first postnatal week by ectopic expression of the layer 5B output neuron-specific transcription factor Fezf2. These findings reveal a high degree of plasticity in the identity of postmitotic neocortical neurons and provide a proof of principle for postnatal re-engineering of specific neural microcircuits in vivo.