958 resultados para micro-CT,cone beam Ct,trabecular tissue,image segmentation,computed tomography
Resumo:
To evaluate the sensitivity of postmortem computed tomography (PMCT) in rib fracture detection validated against autopsy. Fifty-one forensic cases underwent a postmortem CT prior to forensic autopsy. Two image readers (radiologist and forensic pathologist) assessed high resolution CT data sets for rib fractures. Correct recognition rates (CRR), sensitivity and specificity values were calculated over all observations as well as individually for every rib and region. Additionally, for partial rib fractures the sensitivity of autopsy was calculated vice versa. 3876 entries in each study protocol (autopsy, PMCT radiologist and PMCT forensic pathologist) were investigated. A total of 690 fractures (autopsy), 491 (PMCT and radiologist) and 559 (PMCT and forensic pathologist) were detected. The CRR was 0.85. Sensitivity and specificity of PMCT for rib fracture detection were 0.63 (0.58 radiologist, 0.68 forensic pathologist) and 0.97 (both readers 0.97), respectively. Low CRR and sensitivity values were obtained for antero-lateral fractures. Partial rib fractures were better detected by PMCT. PMCT has a rather low sensitivity for rib fracture detection when validated against autopsy and indicates that clinical CT may also demonstrate a reasonable number of false negatives. Partial rib fractures often remain undetected at autopsy.
Resumo:
Objective: To report a single-center experience treating patients with squamous- cell carcinoma of the anal canal using helical Tomotherapy (HT) and concurrent chemotherapy (CT).Materials/Methods: From October 2007 to February 2011, 55 patients were treated with HT and concurrent CT (5-fluorouracil/capecitabin and mitomycin) for anal squamous-cell carcinoma. All patients underwent computed- tomography-based treatment planning, with pelvic and inguinal nodes receiving 36 Gy in 1.8 Gy/fraction. Following a planned 1-week break, primary tumor site and involved nodes were boosted to a total dose 59.4 Gy in 1.8 Gy/fraction. Dose-volume histograms of several organs at risk (OAR; bladder, small intestine, rectum, femoral heads, penile bulb, external genitalia) were assessed in terms of conformal avoidance. All toxicity was scored according to the CTCAE, v.3.0. HT plans and treatment were implemented using the Tomotherapy, Inc. software and hardware. For dosimetric comparisons, 3D RT and/or IMRT plans were also computed for some of the patients using the CMS planning system, for treatment with 6-18 MV photons and/or electrons with suitable energies from a Siemens Primus linear accelerator equipped with a multileaf collimator.Locoregional control and survival curves were compared with the log-rank test, and multivariate analysis by the Cox model.Results: With 360-degree-of-freedom beam projection, HT has an advantage over other RT techniques (3D or 5-field step-and-shot IMRT). There is significant improvement over 3D or 5-field IMRT plans in terms of dose conformity around the PTV, and dose gradients are steeper outside the target volume, resulting in reduced doses to OARs. Using HT, acute toxicity was acceptable, and seemed to be better than historical standards.Conclusions: Our results suggest that HT combined with concurrent CT for anal cancer is effective and tolerable. Compared to 3D RT or 5-field step-andshot IMRT, there is better conformity around the PTV, and better OAR sparing.
Resumo:
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Resumo:
The purpose of this study was to assess the spatial resolution of a computed tomography (CT) scanner with an automatic approach developed for routine quality controls when varying CT parameters. The methods available to assess the modulation transfer functions (MTF) with the automatic approach were Droege's and the bead point source (BPS) methods. These MTFs were compared with presampled ones obtained using Boone's method. The results show that Droege's method is not accurate in the low-frequency range, whereas the BPS method is highly sensitive to image noise. While both methods are well adapted to routine stability controls, it was shown that they are not able to provide absolute measurements. On the other hand, Boone's method, which is robust with respect to aliasing, more resilient to noise and provides absolute measurements, satisfies the commissioning requirements perfectly. Thus, Boone's method combined with a modified Catphan 600 phantom could be a good solution to assess CT spatial resolution in the different CT planes.
Resumo:
Little is known about the long-term survivors of acute arsenic intoxication. We present here a clinical case report of a man with chronic hepatitis B virus (HBV) infection who developed hepatocellular carcinoma four years after acute arsenic poisoning. HBsAg was detected in serum in 1990 when he voluntarily donated blood. In 1991, the patient suffered from severe psychological depression that led him to attempt suicide by massive ingestion of an arsenic-containing rodenticide. He survived with polyneuropathy and paralysis of the lower limbs, and has been wheelchair-bound since then. During participation in a follow-up study conducted among HBV carriers, abdominal ultrasound detected a two-centimeter liver mass consistent with hepatocellular carcinoma. The tumor was confirmed by computed tomography (CT) and magnetic resonance image (MRI). Because of his significant comorbidity, the patient received palliative treatment with transarterial lipiodol chemoembolization (TACE) on three occasions (1996, 1997 and 1999). At his most recent visit in May 2005, the patient was asymptomatic, liver enzymes were normal and the tumor was in remission on ultrasound.
Resumo:
Since January 2008-de facto 2012-medical physics experts (MPEs) are, by law, to be involved in the optimisation process of radiological diagnostic procedures in Switzerland. Computed tomography, fluoroscopy and nuclear medicine imaging units have been assessed for patient exposure and image quality. Large spreads in clinical practice have been observed. For example, the number of scans per abdominal CT examination went from 1 to 9. Fluoroscopy units showed, for the same device settings, dose rate variations up to a factor of 3 to 7. Quantitative image quality for positron emission tomography (PET)/CT examinations varied significantly depending on the local image reconstruction algorithms. Future work will be focused on promoting team cooperation between MPEs, radiologists and radiographers and on implementing task-oriented objective image quality indicators.
Resumo:
INTRODUCTION: The aim of this study was to evaluate the concordance of 2- and 3-dimensional radiography and histopathology in the diagnosis of periapical lesions. METHODS: Patients were consecutively enrolled in this study provided that preoperative periapical radiography (PR) and cone-beam computed tomographic imaging of the tooth to be treated with apical surgery were performed. The periapical lesional tissue was histologically analyzed by 2 blinded examiners. The final histologic diagnosis was compared with the radiographic assessments of 4 blinded observers. The initial study material included 62 teeth in the same number of patients. RESULTS: Four lesions had to be excluded during processing, resulting in a final number of 58 evaluated cases (31 women and 27 men, mean age = 55 years). The final histologic diagnosis of the periapical lesions included 55 granulomas (94.8%) and 3 cysts (5.2%). Histologic analysis of the tissue samples from the apical lesions exhibited an almost perfect agreement between the 2 experienced investigators with an overall agreement of 94.83% (kappa = 0.8011). Radiographic assessment overestimated cysts by 28.4% (cone-beam computed tomographic imaging) and 20.7% (periapical radiography), respectively. Comparing the correlation of the radiographic diagnosis of 4 observers with the final histologic diagnosis, 2-dimensional (kappa = 0.104) and 3-dimensional imaging (kappa = 0.111) provided only minimum agreement. CONCLUSIONS: To establish a final diagnosis of an apical radiolucency, the tissue specimen should be evaluated histologically and specified as a granuloma (with/without epithelium) or a cyst. Analysis of 2-dimensional and 3-dimensional radiographic images alike results only in a tentative diagnosis that should be confirmed with biopsy.
Resumo:
Transiliac bone biopsies, while widely considered to be the standard for the analysis of bone microstructure, are typically restricted to specialized centers. The benefit of Trabecular Bone Score (TBS) in addition to areal bone mineral density (aBMD) for fracture risk assessment has been documented in cross-sectional and prospective studies. The aim of this study was to test if TBS may be useful as a surrogate to histomorphometric trabecular parameters of transiliac bone biopsies. Transiliac bone biopsies from 80 female patients (median age 39.9years-interquartile range, IQR 34.7; 44.3) and 43 male patients (median age 42.7years-IQR 38.9; 49.0) with idiopathic osteoporosis and low traumatic fractures were included. Micro-computed tomography values of bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), structural model index (SMI) as well as serum bone turnover markers (BTMs) sclerostin, intact N-terminal type 1 procollagen propeptide (P1NP) and cross-linked C-telopeptide (CTX) were investigated. TBS values were higher in females (1.282 vs 1.169, p< 0.0001) with no differences in spine aBMD, whereas sclerostin levels (45.5 vs 33.4pmol/L) and aBMD values at the total hip (0.989 vs 0.971g/cm(2), p<0.001 for all) were higher in males. Multiple regression models including: gender, aBMD and BTMs revealed TBS as an independent, discriminative variable with adjusted multiple R(2) values of 69.1% for SMI, 79.5% for Tb.N, 68.4% for Tb.Sp, and 83.3% for BV/TV. In univariate regression models, BTMs showed statistically significant results, whereas in the multiple models only P1NP and CTX were significant for Tb.N. TBS is a practical, non-invasive, surrogate technique for the assessment of cancellous bone microarchitecture and should be implemented as an additional tool for the determination of trabecular bone properties.
Resumo:
PURPOSE: Iterative algorithms introduce new challenges in the field of image quality assessment. The purpose of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT. MATERIALS AND METHODS: A QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction 50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels (D-DOG). The CHO performances were compared to the outcomes of six human observers having performed four alternative forced choice (4-AFC) tests. RESULTS: For the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher detectability index. The outcomes of human observers and results of CHO are highly correlated whatever the dose levels, the signals considered and the algorithms used when some noise is added to the CHO model. The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR. CONCLUSION: The human observers' performances can be predicted by the CHO model. This opens the way for proposing, in parallel to the standard dose report, the level of low contrast detectability expected. The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does not impair diagnostics.
Resumo:
X-ray medical imaging is increasingly becoming three-dimensional (3-D). The dose to the population and its management are of special concern in computed tomography (CT). Task-based methods with model observers to assess the dose-image quality trade-off are promising tools, but they still need to be validated for real volumetric images. The purpose of the present work is to evaluate anthropomorphic model observers in 3-D detection tasks for low-contrast CT images. We scanned a low-contrast phantom containing four types of signals at three dose levels and used two reconstruction algorithms. We implemented a multislice model observer based on the channelized Hotelling observer (msCHO) with anthropomorphic channels and investigated different internal noise methods. We found a good correlation for all tested model observers. These results suggest that the msCHO can be used as a relevant task-based method to evaluate low-contrast detection for CT and optimize scan protocols to lower dose in an efficient way.
Resumo:
Abstract Objective: To propose a protocol for pulmonary angiography using 64-slice multidetector computed tomography (64-MDCT) with 50 mL of iodinated contrast material, in an unselected patient population, as well as to evaluate vascular enhancement and image quality. Materials and Methods: We evaluated 29 patients (22-86 years of age). The body mass index ranged from 19.0 kg/m2 to 41.8 kg/m2. Patients underwent pulmonary CT angiography in a 64-MDCT scanner, receiving 50 mL of iodinated contrast material via venous access at a rate of 4.5 mL/s. Bolus tracking was applied in the superior vena cava. Two experienced radiologists assessed image quality and vascular enhancement. Results: The mean density was 382 Hounsfield units (HU) for the pulmonary trunk; 379 and 377 HU for the right and left main pulmonary arteries, respectively; and 346 and 364 HU for the right and left inferior pulmonary arteries, respectively. In all patients, subsegmental arteries were analyzed. There were streak artifacts from contrast material in the superior vena cava in all patients. However, those artifacts did not impair the image analysis. Conclusion: Our findings suggest that pulmonary angiography using 64-MDCT with 50 mL of iodinated contrast can produce high quality images in unselected patient populations.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
Planar, large area, position sensitive silicon detectors are widely utilized in high energy physics research and in medical, computed tomography (CT). This thesis describes author's research work relating to development of such detector components. The key motivation and objective for the research work has been the development of novel, position sensitive detectors improving the performance of the instruments they are intended for. Silicon strip detectors are the key components of barrel-shaped tracking instruments which are typically the innermost structures of high energy physics experimental stations. Particle colliders such as the former LEP collider or present LHC produce particle collisions and the silicon strip detector based trackers locate the trajectories of particles emanating from such collisions. Medical CT has become a regular part of everyday medical care in all developed countries. CT scanning enables x-ray imaging of all parts of the human body with an outstanding structural resolution and contrast. Brain, chest and abdomen slice images with a resolution of 0.5 mm are possible and latest CT machines are able to image whole human heart between heart beats. The two application areas are presented shortly and the radiation detection properties of planar silicon detectors are discussed. Fabrication methods and preamplifier electronics of the planar detectors are presented. Designs of the developed, large area silicon detectors are presented and measurement results of the key operating parameters are discussed. Static and dynamic performance of the developed silicon strip detectors are shown to be very satisfactory for experimental physics applications. Results relating to the developed, novel CT detector chips are found to be very promising for further development and all key performance goals are met.
Resumo:
In the present experimental study we assessed induced osteoarthritis data in rabbits, compared three diagnostic methods, i.e., radiography (XR), computed tomography (CT) and magnetic resonance imaging (MRI), and correlated the imaging findings with those obtained by macroscopic evaluation. Ten young female rabbits of the Norfolk breed were used. Seven rabbits had the right knee immobilized in extension for a period of 12 weeks (immobilized group), and three others did not have a limb immobilized and were maintained under the same conditions (control group). Alterations observed by XR, CT and MRI after the period of immobilization were osteophytes, osteochondral lesions, increase and decrease of joint space, all of them present both in the immobilized and non-immobilized contralateral limbs. However, a significantly higher score was obtained for the immobilized limbs (XT: P = 0.016, CT: P = 0.031, MRI: P = 0.0156). All imaging methods were able to detect osteoarthritis changes after the 12 weeks of immobilization. Macroscopic evaluation identified increased thickening of joint capsule, proliferative and connective tissue in the femoropatellar joint, and irregularities of articular cartilage, especially in immobilized knees. The differences among XR, CT and MRI were not statistically significant for the immobilized knees. However, MRI using a 0.5 Tesla scanner was statistically different from CT and XR for the non-immobilized contralateral knees. We conclude that the three methods detected osteoarthritis lesions in rabbit knees, but MRI was less sensitive than XR and CT in detecting lesions compatible with initial osteoarthritis. Since none of the techniques revealed all the lesions, it is important to use all methods to establish an accurate diagnosis.
Resumo:
Computed tomography (CT) images are routinely used to assess ischemic brain stroke in the acute phase. They can provide important clues about whether to treat the patient by thrombolysis with tissue plasminogen activator. However, in the acute phase, the lesions may be difficult to detect in the images using standard visual analysis. The objective of the present study was to determine if texture analysis techniques applied to CT images of stroke patients could differentiate between normal tissue and affected areas that usually go unperceived under visual analysis. We performed a pilot study in which texture analysis, based on the gray level co-occurrence matrix, was applied to the CT brain images of 5 patients and of 5 control subjects and the results were compared by discriminant analysis. Thirteen regions of interest, regarding areas that may be potentially affected by ischemic stroke, were selected for calculation of texture parameters. All regions of interest for all subjects were classified as lesional or non-lesional tissue by an expert neuroradiologist. Visual assessment of the discriminant analysis graphs showed differences in the values of texture parameters between patients and controls, and also between texture parameters for lesional and non-lesional tissue of the patients. This suggests that texture analysis can indeed be a useful tool to help neurologists in the early assessment of ischemic stroke and quantification of the extent of the affected areas.