918 resultados para mathematical model,


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Xinli mine area of Sanshandao mine is adjacent to the Bohai Sea and its main exploitable ore deposit occurs in the undersea rock mass. The mine is the biggest undersea gold mine of China after production. The mine area faces a latent danger of water bursting, even sudden seawater inrush. There is no mature experience in undersea mining in China so far. The vein ore deposit is located in the lower wall of a fault; its possible groundwater sources mainly include bittern, Quaternary pore water and modern seawater. To ensure the safety of undersea mining, to survey the flooding conditions of the ore deposit using proper measures and study the potential seawater inrush pattern are the key technical problems. With the Xinli mine area as a case study, the engineering geological conditions of the Xinli mine area are surveyed in situ, the regional structural pattern and rock mass framework characteristics are found out, the distribution of the structural planes are modeled by a Monte Carlo method and the connectivity coefficients of rock mass structural planes are calculated. The regional hydro-geological conditions are analyzed and the in-situ hydro-geological investigation and sampling are performed in detail, the hydrochemistry and isotopes testing and groundwater dynamic monitoring are conducted, the recharge, runoff, discharge conditions are specified and the sources of flooding are distinguished. Some indices are selected from the testing results to calculate the proportion of each source in some water discharge points and in the whole water discharge of the Xinli mine area. The temporal and spatial variations of each water source of the whole ore deposit flooding are analyzed. According to the special project conditions in the Xinli mine area, the permeability coefficient tensors of the rock mass in Xinli mine area are calculated based on a fracture geometry measurement method, in terms of the connectivity and a few hydraulic testing results, a modified synthetic permeability coefficient are calculated. The hydro-geological conceptual and mathematical model are established,the water yield of mine is predicted using Visual Modflow code. The spreading law of surrounding rock mass deformation and secondary stress are studied by numerical analysis; the intrinsic mechanism of the faults slip caused by the excavation of ore deposit is analyzed. The results show that the development of surrounding rock mass deformation and secondary stress of vein ore deposit in the lower wall of a fault, is different from that in a thick-big ore deposit. The secondary stress caused by the excavation of vein ore deposit in the lower wall of a fault, is mainly distributed in the upper wall of the fault, one surface subsidence center will occur. The influences of fault on the rock mass movement, secondary stress and hydro-geological structures are analyzed; the secondary stress is blocked by the fault and the tensile stress concentration occurs in the rock mass near the fault, the original water blocking structure is destructed and the permeable structure is reconstructed, the primary structural planes begin to expand and newborn fissures occur, so the permeability of the original permeable structure is greatly enhanced, so the water bursting will probably occur. Based on this knowledge, the possible water inrush pattern and position of the Xinli mine area are predicted. Some computer programs are developed using object-oriented design method under the development platform Visual Studio.Net. These programs include a Monte Carlo simulation procedure, a joint diagrammatizing procedure, a structural planes connectivity coefficient calculating procedure, a permeability tensor calculating procedure, a water chemical formula edit and water source fixture conditions calculating procedure. A new computer mapping algorithm of joint iso-density diagram is raised. Based on the powerful spatial data management and icon functions of Geographic Information System, the pit water discharge dynamic monitoring data management information systems are established with ArcView.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mathematical modeling of multiphase fluid flow is an important aspect of basin simulation, and also is a topic of geological frontier. Based on coupling relation of temperature, pressure and fluid flow, this dissertation discusses the modeling which conform to geological regularities of fluid migration. The modeling that is multi-field and multiphase includes heat transport equation, pressure evolvement equation, solution transport equation and fluid transport equation. The finite element method is effective numerical calculation methods. Author applies it to solve modeling and implements the finite element program, and the modeling is applied to Ying-Qiong Basin. The channels of fluid vertical migration are fault, fracture and other high penetrability area. In this thesis, parallel fracture model and columnar channel model have been discussed, and a characteristic time content and a characteristic space content been obtained to illustrate the influences of stratigraphic and hydrodynamic factors on the process. The elliptoid fracture model is established and its approximately solution in theory is gotten. Three kinds of modeling are applied to analyze the transient variation process of fluid pressure in the connected permeable formations. The elliptoid fracture model is the most similar geology model comparing with the other fracture models so the research on this fracture model can enhance the understanding to fluid pressure. In the non-hydrodynamic condition, because of the difference between water density and nature gas density, nature gas can migrate upon by float force. A one-dimension mathematical model of nature gas migration by float force is established and also applied to analyze the change in the saturation of gas. In the process of gas migration its saturation is non-continuous. Fluid flow is an important factor which influences the distribution of the temperature-field, the change of temperature can influence fluid property (including density, viscidity, and solubility),a nd the temperature field has coupling relations to the fluid pressure field. In this dissertation one-dimension and two-dimension thermal convection modeling is developed and also applied to analyze convective and conductive heat transfer. Author has established one-dimension and two-dimension mathematical modeling in which fluid is a mixture of water and nature gas based on the coupling relation between temperature and pressure, discussed mixture fluid convection heat transfer in different gas saturation, and analyzed overpressure form mechanism. Based on geothermal abnormity and pore pressure distribution in Dongfong 1-1, Yinggehai Basin, South China Sea, one-dimension mathematical modeling of coupling temperature and pressure is established. The modeling simulates the process that fluid migrates from deep to shallow and overpressure forms in shallow. When overpressure is so large that fractures appear and overpressure is released. As deep fluid flow to shallow, the high geothermal then forms in shallow. Based on the geological characteristics in Ya13-1, two-dimension mathematical modeling of coupling temperature and pressure is established. Fluid vertically flows in fault and then laterally migrates in reservoir. The modeling simulates the geothermal abnormity and pore pressure distribution in reservoir.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of the complexity and particularity, especially the result is more depend on the expert' s experience, the calculate method which is based on the simplicity mathematical model can hardly have any effective role in the oilfield .The coalescent method of artificial intelligence and signal manage in the correlation of reservoir use log curve has been put forward.in this paper. Following the principle of "controlled by classification and correlation by deposit gyration ". The system of correlation has been setup, which can identify "standard layer" first by the improved method of gray connection system, and then on the basis of identified "standard layer", interpret the fault, and last identify the layer in the reservoir. A effective method of "the consistent character of a reservoir "has been adopt to solved the puzzle of interpret the fault. On the basis of sedimentary theory and the quantity analysis of log curve shape of different type microfacies, a serial of different type micofacies' s models has been build that use eight optimized parameters, five of eight rationed parameters being used to describe microfacies with log curve, the distribution area of every parameters for the microfacies has been give. Because the classical math can only be used in the areas that principles are very clearly, not be fit for the description of geology character, so The fuzzy math integrate judgment has been adopt in the using log curve to determine microfacies; the accordance ration is 85 percent. A set of software has been programmed which is on the system of Windows. the software has the integration function of data process, auto-contrast reservoir layer, determination of microfacies using log curve, character the connectivity of sandstones and plotting of geology map. Through the application, this system has high precision and has become a useful tool in the study of geology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By applying synthetically multi-subject theories, methods and technology, such as petroleum geology, sedimentology, seep mechanics, geochemistry, geophysics and so on; and by making full use of computer; combining quantity and quality, macroscopic and microscopic, intensive static and active description, comprehensive studying and physical modeling, 3 dimension and 4 dimension description; the paper took Wen-33 block of Zhongyuan oil field as an example; and studied reservoir macroscopic and microscopic parameter changing rule and evolve mechanics in different water-blood stage. The reservoir dynamic model and remaining-oil distribution mode was established, and several results were achieved as follows: (1) Three types of parameter gaining, optimizing and whole data body of Wen33th reservoir were established. Strata framework, structure framework, reservoir types and distribution of Wen33th reservoir were discussed. Reservoir genesis types, space distribution law and evolve rule of Wen33th reservoir were explained. 4D dynamic model of macroscopic parameter of reservoir flow dynamic geologic function of Wen33th reservoir was established. The macroscopic remaining-oil distribution and control factor was revealed. The models of the microscopic matrix field, pore-throat network field, fluid field, clay mineral field of Wen-33 block were established. The characters, changing rules and controlled factors in different water stage were revealed. The evolve rule and mechanics of petroleum fluid field in Wen-33 block reservoir were revealed. Macroscopic and microscopic remaining oil distribution mode of Wen-33 block were established. Seven types, namely 12 shapes of dynamic model of microscopic remaining oil were discussed, and the distribution of mover remaining oil was predicted. Emulation model: mathematical model and prediction model of Wen-33 block were established. The changing mechanics of reservoir parameter and distribution of remaining-oil were predicted. Firstly, the paper putting forward that the dynamic geologic function of petroleum development is the factor of controlling remaining-oil, which is the main factor leading to matrix field, network field, clay mineral field, fluid field, physic and chemical field, stress field and fluid field forming and evolving. (10) A set of theories, methods and technologies of investigating, describing, characterizing and predicting complex fault-block petroleum were developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The grid is a foundation of reservoir description and reservoir simulation. The scale of grid size is vital influence for the precision of reservoir simulation the gridding of reservoir parameters require reasonable interpolation method with computing quickly and accurately. The improved distant weighted interpolation method has many properties, such as logical data points selection, exact interpolation, less calculation and simply programming, and its application can improve the precision of reservoir description and reservoir simulation. The Fractal geologic statistics describes scientifically the distribution law of various geological properties in reservoir. The Fractal interpolation method is applied in grid interpolation of reservoir parameters, and the result more accorded with the geological property and configuration of reservoir, and improved the rationality and quality of interpolation calculation. Incorporating the improved distant weighted interpolation method with Fractal interpolation method during mathematical model of grid-upscaling and grid-downscaling, the softwares of GROUGH(grid-upscaling) and GFINE (grid-downscaling) were developed aiming at the questions of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation. The softwares of GROUGH and GFINE initial applied in the research of fined and large-scale reservoir simulation. It obtained fined distribution of remaining oil applying grid-upscaling and grid-downscaling technique in fined reservoir simulation of Es21-2 Shengtuo oilfield, and provided strongly and scientific basis for integral and comprehensive adjustment. It's a giant tertiary oil recovery pilot area in the alkaline/surfactant/polymer flooding pilot area of west district of Gudao oilfield, and first realized fined reservoir simulation of chemical flooding using grid-upscaling and grid-downscaling technique. It has wide applied foreground and significant research value aiming at the technique of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technique of energy extraction using groundwater source heat pumps, as a sustainable way of low-grade thermal energy utilization, has widely been used since mid-1990's. Based on the basic theories of groundwater flow and heat transfer and by employing two analytic models, the relationship of the thermal breakthrough time for a production well with the effect factors involved is analyzed and the impact of heat transfer by means of conduction and convection, under different groundwater velocity conditions, on geo-temperature field is discussed.A mathematical model, coupling the equations for groundwater flow with those for heat transfer, was developed. The impact of energy mining using a single well system of supplying and returning water on geo-temperature field under different hydrogeological conditions, well structures, withdraw-and-reinjection rates, and natural groundwater flow velocities was quantitatively simulated using the finite difference simulator HST3D. Theoretical analyses of the simulated results were also made. The simulated results of the single well system indicate that neither the permeability nor the porosity of a homogeneous aquifer has significant effect on the temperature of the production segment provided that the production and injection capability of each well in the aquifers involved can meet the designed value. If there exists a lower permeable interlayer, compared with the main aquifer, between the production and injection segments, the temperature changes of the production segment will decrease. The thicker the interlayer and the lower the interlayer permeability, the longer the thermal breakthrough time of the production segment and the smaller the temperature changes of the production segment. According to the above modeling, it can also be found that with the increase of the aquifer thickness, the distance between the production and injection screens, and/or the regional groundwater flow velocity, and/or the decrease of the production-and-reinjection rate, the temperature changes of the production segment decline. For an aquifer of a constant thickness, continuously increase the screen lengths of production and injection segments may lead to the decrease of the distance between the production and injection screens, and the temperature changes of the production segment will increase, consequently.According to the simulation results of the single well system, the parameters, that can cause significant influence on heat transfer as well as geo-temperature field, were chosen for doublet system simulation. It is indicated that the temperature changes of the pumping well will decrease as the aquifer thickness, the distance between the well pair and/or the screen lengths of the doublet increase. In the case of a low permeable interlayer embedding in the main aquifer, if the screens of the pumping and the injection wells are installed respectively below and above the interlayer, the temperature changes of the pumping well will be smaller than that without the interlay. The lower the permeability of the interlayer, the smaller the temperature changes. The simulation results also indicate that the lower the pumping-and-reinjection rate, the greater the temperature changes of the pumping well. It can also be found that if the producer and the injector are chosen reasonably, the temperature changes of the pumping well will decline as the regional groundwater flow velocity increases. Compared with the case that the groundwater flow direction is perpendicular to the well pair, if the regional flow is directed from the pumping well to the injection well, the temperature changes of the pumping well is relatively smaller.Based on the above simulation study, a case history was conducted using the data from an operating system in Beijing. By means of the conceptual model and the mathematical model, a 3-D simulation model was developed and the hydrogeological parameters and the thermal properties were calibrated. The calibrated model was used to predict the evolution of the geo-temperature field for the next five years. The simulation results indicate that the calibrated model can represent the hydrogeological conditions and the nature of the aquifers. It can also be found that the temperature fronts in high permeable aquifers move very fast and the radiuses of temperature influence are large. Comparatively, the temperature changes in clay layers are smaller and there is an obvious lag of the temperature changes. According to the current energy mining load, the temperature of the pumping wells will increase by 0.7°C at the end of the next five years. The above case study may provide reliable base for the scientific management of the operating system studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quality of advertising copy is an important component of advertising service. An advertising system with only copy design and production but without evaluation is imperfect. Establishing an evaluation system of television advertising copy is the principal purpose of the present work. In terms of consumer behavior, the work focused on consumers' evaluation-in-general of T commercials. The research consisted of three subprograms. The first subprogrom was associated with the basic factors in the evaluation of television advertising copy. The second one was related to the relative importance of those basic factors. The last one was related to the way in which the consumers' synthetic evaluation of copy under multidimensions. These subprogram composed the evaluation system of television advertising copy. In the study of the first subprogram, by the use of a variaty of "multistage evaluation scale", a survey into consumers' evaluation-in-general of television ads was made, which obtained five factors, namely, credibility, attractiveness, suitability, cognition and affect impact, through factor analysis (Cum.Pct. = 56.2%, α = 0.84). The study of second subprogram acquired their relative weights by a popular method of weight in the area of decision analysis, the result was as followings: credibility-0.27, attractiveness-0.24, suitability-0.18, affect impact-0.16, cognition-0.15; and fanally, under the condition of quasi-experiment, the third studyestablished a mathematical model of the synthetic evaluation of television ad copy, which was expressed as O = ΣF * W, through a "synthetical" method of multidimensional decision making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to analyze the characteristics of protein permeability in alainate-polylysine-alginate (APA) and alginate-chitosan-alginate (ACA) microcapsules by mathematical models based on the balance of chemical potential. The comparison between calculated results and experimental data shows that the models can describe the process of protein diffusion from microcapsule and protein release into microcapsule successfully. The influences of membrane composition on the permeability of ACA microcapsule have been investigated and analyzed. The effect of resistance on the mass transfer is further analyzed theoretically with the aid of mathematical modeling. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Collaborative projects between Industry and Academia provide excellent opportunities for learning. Throughout the academic year 2014-2015 undergraduates from the School of Arts, Media and Computer Games at Abertay University worked with academics from the Infection Group at the University of St Andrews and industry partners Microsoft and DeltaDNA. The result was a serious game prototype that utilized game design techniques and technology to demystify and educate players about the diagnosis and treatment of one of the world's oldest and deadliest diseases, Tuberculosis (TB). Project Sanitarium is a game incorporating a mathematical model that is based on data from real-world drug trials. This paper discusses the project design and development, demonstrating how the project builds on the successful collaborative pedagogical model developed by academic staff at Abertay University. The aim of the model is to provide undergraduates with workplace simulation, wider industry collaboration and access to academic expertise to solve challenging and complex problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neoplastic tissue is typically highly vascularized, contains abnormal concentrations of extracellular proteins (e.g. collagen, proteoglycans) and has a high interstitial fluid pres- sure compared to most normal tissues. These changes result in an overall stiffening typical of most solid tumors. Elasticity Imaging (EI) is a technique which uses imaging systems to measure relative tissue deformation and thus noninvasively infer its mechanical stiffness. Stiffness is recovered from measured deformation by using an appropriate mathematical model and solving an inverse problem. The integration of EI with existing imaging modal- ities can improve their diagnostic and research capabilities. The aim of this work is to develop and evaluate techniques to image and quantify the mechanical properties of soft tissues in three dimensions (3D). To that end, this thesis presents and validates a method by which three dimensional ultrasound images can be used to image and quantify the shear modulus distribution of tissue mimicking phantoms. This work is presented to motivate and justify the use of this elasticity imaging technique in a clinical breast cancer screening study. The imaging methodologies discussed are intended to improve the specificity of mammography practices in general. During the development of these techniques, several issues concerning the accuracy and uniqueness of the result were elucidated. Two new algorithms for 3D EI are designed and characterized in this thesis. The first provides three dimensional motion estimates from ultrasound images of the deforming ma- terial. The novel features include finite element interpolation of the displacement field, inclusion of prior information and the ability to enforce physical constraints. The roles of regularization, mesh resolution and an incompressibility constraint on the accuracy of the measured deformation is quantified. The estimated signal to noise ratio of the measured displacement fields are approximately 1800, 21 and 41 for the axial, lateral and eleva- tional components, respectively. The second algorithm recovers the shear elastic modulus distribution of the deforming material by efficiently solving the three dimensional inverse problem as an optimization problem. This method utilizes finite element interpolations, the adjoint method to evaluate the gradient and a quasi-Newton BFGS method for optimiza- tion. Its novel features include the use of the adjoint method and TVD regularization with piece-wise constant interpolation. A source of non-uniqueness in this inverse problem is identified theoretically, demonstrated computationally, explained physically and overcome practically. Both algorithms were test on ultrasound data of independently characterized tissue mimicking phantoms. The recovered elastic modulus was in all cases within 35% of the reference elastic contrast. Finally, the preliminary application of these techniques to tomosynthesis images showed the feasiblity of imaging an elastic inclusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning- related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, probably mediated by GABAergic NOS interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolongued pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the P(luxI) promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of "hidden interactions" on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphorus (P) is a crucial element for life and therefore for maintaining ecosystem productivity. Its local availability to the terrestrial biosphere results from the interaction between climate, tectonic uplift, atmospheric transport, and biotic cycling. Here we present a mathematical model that describes the terrestrial P-cycle in a simple but comprehensive way. The resulting dynamical system can be solved analytically for steady-state conditions, allowing us to test the sensitivity of the P-availability to the key parameters and processes. Given constant inputs, we find that humid ecosystems exhibit lower P availability due to higher runoff and losses, and that tectonic uplift is a fundamental constraint. In particular, we find that in humid ecosystems the biotic cycling seem essential to maintain long-term P-availability. The time-dependent P dynamics for the Franz Josef and Hawaii chronosequences show how tectonic uplift is an important constraint on ecosystem productivity, while hydroclimatic conditions control the P-losses and speed towards steady-state. The model also helps describe how, with limited uplift and atmospheric input, as in the case of the Amazon Basin, ecosystems must rely on mechanisms that enhance P-availability and retention. Our novel model has a limited number of parameters and can be easily integrated into global climate models to provide a representation of the response of the terrestrial biosphere to global change. © 2010 Author(s).