975 resultados para markov chains monte carlo methods
Resumo:
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. (c) 2005 American Institute of Physics.
Resumo:
The estimated parameters of output distance functions frequently violate the monotonicity, quasi-convexity and convexity constraints implied by economic theory, leading to estimated elasticities and shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the effects of input and output changes on productivity growth and relative efficiency levels. We show how a Bayesian approach can be used to impose these constraints on the parameters of a translog output distance function. Implementing the approach involves the use of a Gibbs sampler with data augmentation. A Metropolis-Hastings algorithm is also used within the Gibbs to simulate observations from truncated pdfs. Our methods are developed for the case where panel data is available and technical inefficiency effects are assumed to be time-invariant. Two models-a fixed effects model and a random effects model-are developed and applied to panel data on 17 European railways. We observe significant changes in estimated elasticities and shadow price ratios when regularity restrictions are imposed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.
Resumo:
Mitarai [Phys. Fluids 17, 047101 (2005)] compared turbulent combustion models against homogeneous direct numerical simulations with extinction/recognition phenomena. The recently suggested multiple mapping conditioning (MMC) was not considered and is simulated here for the same case with favorable results. Implementation issues crucial for successful MMC simulations are also discussed.
Resumo:
Eukaryotic genomes display segmental patterns of variation in various properties, including GC content and degree of evolutionary conservation. DNA segmentation algorithms are aimed at identifying statistically significant boundaries between such segments. Such algorithms may provide a means of discovering new classes of functional elements in eukaryotic genomes. This paper presents a model and an algorithm for Bayesian DNA segmentation and considers the feasibility of using it to segment whole eukaryotic genomes. The algorithm is tested on a range of simulated and real DNA sequences, and the following conclusions are drawn. Firstly, the algorithm correctly identifies non-segmented sequence, and can thus be used to reject the null hypothesis of uniformity in the property of interest. Secondly, estimates of the number and locations of change-points produced by the algorithm are robust to variations in algorithm parameters and initial starting conditions and correspond to real features in the data. Thirdly, the algorithm is successfully used to segment human chromosome 1 according to GC content, thus demonstrating the feasibility of Bayesian segmentation of eukaryotic genomes. The software described in this paper is available from the author's website (www.uq.edu.au/similar to uqjkeith/) or upon request to the author.
Resumo:
In electronic support, receivers must maintain surveillance over the very wide portion of the electromagnetic spectrum in which threat emitters operate. A common approach is to use a receiver with a relatively narrow bandwidth that sweeps its centre frequency over the threat bandwidth to search for emitters. The sequence and timing of changes in the centre frequency constitute a search strategy. The search can be expedited, if there is intelligence about the operational parameters of the emitters that are likely to be found. However, it can happen that the intelligence is deficient, untrustworthy or absent. In this case, what is the best search strategy to use? A random search strategy based on a continuous-time Markov chain (CTMC) is proposed. When the search is conducted for emitters with a periodic scan, it is shown that there is an optimal configuration for the CTMC. It is optimal in the sense that the expected time to intercept an emitter approaches linearity most quickly with respect to the emitter's scan period. A fast and smooth approach to linearity is important, as other strategies can exhibit considerable and abrupt variations in the intercept time as a function of scan period. In theory and numerical examples, the optimum CTMC strategy is compared with other strategies to demonstrate its superior properties.
Resumo:
We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.
Resumo:
All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.
Resumo:
We present results that compare the performance of neural networks trained with two Bayesian methods, (i) the Evidence Framework of MacKay (1992) and (ii) a Markov Chain Monte Carlo method due to Neal (1996) on a task of classifying segmented outdoor images. We also investigate the use of the Automatic Relevance Determination method for input feature selection.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which accounts for input noise provided that a model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method adds an extra term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable, and sampling this jointly with the network’s weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input. This leads to the possibility of training an accurate model of a system using less accurate, or more uncertain, data. This is demonstrated on both the, synthetic, noisy sine wave problem and a real problem of inferring the forward model for a satellite radar backscatter system used to predict sea surface wind vectors.