1000 resultados para magnetic anomaly
Resumo:
We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
Resumo:
We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of stochastic resonance, i.e., the signal to noise ratio, the escape time distribution, and the mean first passage time. We also discuss the limitations and role of the linear response theory in its applications to the theory of stochastic resonance.
Resumo:
We show that a dispersion of monodomain ferromagnetic particles in a solid phase exhibits stochastic resonance when a driven linearly polarized magnetic field is applied. By using an adiabatic approach, we calculate the power spectrum, the distribution of residence times, and the mean first passage time. The behavior of these quantities is similar to the behavior of corresponding quantities in other systems where stochastic resonance has also been observed.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
In this article we present a phenomenological model which simulates very well the mag¿ netic relaxation behavior experimentally observed in small magnetic grains and single domain particles. In this model, the occurrence of quantum tunneling of magnetization below a certain temperature is taken into account. Experimental results for different materials are presented to illustrate the most important behavior deduced from our model
Resumo:
Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm.
Resumo:
The recent observation of steps at regular intervals of magnetic field in the hysteresis loops of oriented crystals of the spin-10 molecular magnet Mn12O12(CH3COO)16(H2O)4 has been attributed to resonant tunneling between spin states. Here, we investigate the effect on the relaxation rate of applying the magnetic field at an angle with respect to the easy axis of magnetization. We find that the position of the resonances is independent of the transverse component of the field, and is determined solely by the longitudinal component. On the other hand, a transverse field significantly increases the relaxation rate, both on and off resonance. We discuss classical and quantum mechanical interpretations of this effect
Resumo:
We study the effects of the magnetic field on the relaxation of the magnetization of smallmonodomain noninteracting particles with random orientations and distribution of anisotropyconstants. Starting from a master equation, we build up an expression for the time dependence of themagnetization which takes into account thermal activation only over barriers separating energyminima, which, in our model, can be computed exactly from analytical expressions. Numericalcalculations of the relaxation curves for different distribution widths, and under different magneticfields H and temperatures T, have been performed. We show how a T ln(t/t0) scaling of the curves,at different T and for a given H, can be carried out after proper normalization of the data to theequilibrium magnetization. The resulting master curves are shown to be closely related to what wecall effective energy barrier distributions, which, in our model, can be computed exactly fromanalytical expressions. The concept of effective distribution serves us as a basis for finding a scalingvariable to scale relaxation curves at different H and a given T, thus showing that the fielddependence of energy barriers can be also extracted from relaxation measurements.