938 resultados para light-induced change


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed an ensemble of twelve five-year experiments using a coupled climate-carbon-cycle model with scenarios of prescribed atmospheric carbon dioxide concentration; CO2 was instantaneously doubled or quadrupled at the start of the experiments. Within these five years, climate feedback is not significantly influenced by the effects of climate change on the carbon system. However, rapid changes take place, within much less than a year, due to the physiological effect of CO2 on plant stomatal conductance, leading to adjustment in the shortwave cloud radiative effect over land, due to a reduction in low cloud cover. This causes a 10% enhancement to the radiative forcing due to CO2, which leads to an increase in the equilibrium warming of 0.4 and 0.7 K for doubling and quadrupling. The implications for calibration of energy-balance models are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong intermolecular interactions mediated by short hydrophobic sequences (e.g., 17-20, -L-Leu-L-Val-L-Phe-L-Phe-) in the middle of A beta are known to play a crucial role in the neuropathology of Alzheimer's disease. FTIR, TEM and Congo red binding studies indicated that a series of L-Ala substituted terminally protected peptides related to the sequence 17-20 of the beta-amyloid peptide, adopted D-sheet conformations. However, the Aib-modified analogues disrupt the D-sheet structure and switch over to a 310 helix with increasing number of Aib residues. X-ray crystallography shed some light on the change from sheet to helix at atomic resolution. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the bacterial-dependent metabolism of (-)-epicatechin and (+)-catechin using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal region of the human large intestine. Incubation of (-)-epicatechin or (+)-catechin (150mg/l or 1000mg/l) with faecal bacteria, led to the generation of 5-(3,4'-dihydroxyphenyl)-gamma-valerolactone, 5-phenyl-gamma-valerolactone and phenylpropionic acid. However, the formation of these metabolites from (+)-catechin required its initial conversion to (+)-epicatechin. The metabolism of both flavanols occurred in the presence of favourable carbon sources, notably sucrose and the prebiotic fructo-oligosaccharides, indicating that bacterial utilisation of flavanols also occurs when preferential energy sources are available. (+)-Catechin incubation affected the growth of select microflora, resulting in a statistically significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group, Bifidobacterium spp. and Escherichia coli, as well as a significant inhibitory effect on the growth of the C. histolyticum group. In contrast, the effect of (-)-epicatechin was less profound, only significantly increasing the growth of the C. coccoides-Eubacterium rectale group. These potential prebiotic effects for both (+)-catechin and (-)-epicatechin were most notable at the lower concentration of 150 mg/l. As both (-)-epicatechin and (+)-catechin were converted to the same metabolites, the more dramatic change in the growth of distinct microfloral populations produced by (+)-catechin incubation may be linked to the bacterial conversion of (+)-catechin to (+)-epicatechin. Together these data suggest that the consumption of flavanol-rich foods may support gut health through their ability to exert prebiotic actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of murine Swiss 3T3 fibroblasts and XB/2 keratinocytes with UV-B light (302 nm) resulted in a dose-dependent inhibition of [125I] epidermal growth factor (EGF) binding. The light dose required to achieve 50% inhibition of binding in both cell types was 80–85 J/m2 Decreased [125I] platelet-derived growth factor binding was not evoked even by light doses of up to 280 J/m2 UV-B irradiation did not stimultate phosphorylation of the 80 kd protein substrate for protein kinase C. Furthermore, its effect on [125I]EGF binding was not altered as a consequence of protein kinase C down-regulation following prolonged exposure of cells to phorbol esters. These results indicate that UV-B-induced transmodulation of the epidermal growth factor receptor is a specific event mediated through a protein kinase C-indepen dent pathway. Transfer of culture medium from irradiated cells to untreated control cells showed this effect was not induced as a result of transforming growth factor α release and subsequent binding to the EGF receptor in these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of refractive index change in poly(methyl methacrylate) by frequency doubled femtosecond laser pulses are investigated. It is demonstrated that positive refractive index modificaton can be caused by a combination of depolymerization and crosslinking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CMIP3 (IPCC AR4) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Circumpolar Currents (ACC) show great diversity in these models, with many even showing reductions in transport. To obtain some understanding of diverse responses in the ACC transport, we investigate both external atmospheric and internal oceanic processes that control the ACC transport responses in these models. While the strengthened westerlies act to increase the tilt of isopycnal surfaces and hence the ACC transport through Ekman pumping effects, the associated changes in buoyancy forcing generally tend to reduce the surface meridional density gradient. The steepening of isopycnal surfaces induced by increased wind forcing leads to enhanced (parameterized) eddy-induced transports that act to reduce the isopycnal slopes. There is also considerable narrowing of the ACC that tends to reduce the ACC transport, caused mainly by the poleward shifts of the subtropical gyres and to a lesser extent by the equatorward expansions of the subpolar gyres in some models. If the combined effect of these retarding processes is larger than that of enhanced Ekman pumping, the ACC transport will be reduced. In addition, the effect of Ekman pumping on the ACC is reduced in weakly stratified models. These findings give insight into the reliability of IPCC-class model predictions of the Southern Ocean circulation, and into the observed decadal-scale steady ACC transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparing changes in temperature and solar radiation on centennial timescales can help to constrain the Sun’s impact on climate. New findings regarding the minimum activity level of the Sun reveal that comparisons made so far may have been too simplistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of regional policy for less favoured regions (LFRs) reveals itself when policy-makers must reconcile competitiveness with social cohesion through the adaptation of competition or innovation policies. The vast literature in this area generally builds on an overarching concept of ‘social capital’ as the necessary relational infrastructure for collective action diversification and policy integration, in a context much influenced by a dynamic of industrial change and a necessary balance between the creation and diffusion of ‘knowledge’ through learning. This relational infrastructure or ‘social capital’ is centred on people’s willingness to cooperate and ‘envision’ futures as a result of “social organization, such as networks, norms and trust that facilitate action and cooperation for mutual benefit” (Putnam, 1993: 35). Advocates of this interpretation of ‘social capital’ have adopted the ‘new growth’ thinking behind ‘systems of innovation’ and ‘competence building’, arguing that networks have the potential to make both public administration and markets more effective as well as ‘learning’ trajectories more inclusive of the development of society as a whole. This essay aims to better understand the role of ‘social capital’ in the production and reproduction of uneven regional development patterns, and to critically assess the limits of a ‘systems concept’ and an institution-centred approach to comparative studies of regional innovation. These aims are discussed in light of the following two assertions: i) learning behaviour, from an economic point of view, has its determinants, and ii) the positive economic outcomes of ‘social capital’ cannot be taken as a given. It is suggested that an agent-centred approach to comparative research best addresses the ‘learning’ determinants and the consequences of social networks on regional development patterns. A brief discussion of the current debate on innovation surveys has been provided to illustrate this point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of irradiation (UV-visible light) on a nematic liquid crystal doped with a photoactive azobenzene derivative was investigated. The selective irradiation results in either an E implies Z or Z implies E isomerization of the azobenzene unit. The effect of the isomerization is to cause a reversible depression of the liquid crystal to isotropic (LC implies l) phase transition temperature of the doped mixture, which can be monitored optically as an isothermal phase transition. This depression also results in a biphasic liquid crystal+isotropic region which is discussed. The authors investigate the cause and magnitude of the phase depression as a function of the amount of doped 4-butyl-4'-methoxyazobenzene (photoactive unit) in 4-cyano-4'-n-pentylbiphenyl (liquid crystal unit), and as a function of the percentage conversion of E implies Z (caused by isomerization) in the azobenzene. The photostationary state of the doped mixtures achieved by Z implies E isomerization is considered and its effect upon the transition temperature of the mixture and response time of the system is discussed. They discuss the implications of the photostationary state with regards to the reversibility of the photo-induced phase transition and hence potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Responses in surface winds to solar eclipses have an almost mystical status but are difficult to detect in observations because of their transient nature. High spatial resolution (approx. 1.5 km grid) meteorological models now provide a new technique for their investigation. Measurements from the southern UK meteorological network during the 11 August 1999 total solar eclipse are compared with a high-resolution model ignorant of the lunar shadow’s influence. Differences between the model output and measurements at the eclipse time show transient eclipse zone temperature decreases of up to 3 degrees C, which also depressed the day’s maximum temperature compared with the model prediction. Coherent responses in temperature, and wind speed and direction measurements are detected in the inland cloud-free region (from 51 to 52 degrees N and −2 to 0 degrees E). A mean regional wind speed decrease of 0.7 m s−1 during the maximum eclipse hour is apparent with a mean anticlockwise wind direction change of 17 degrees; no such changes occurred in the model output. Such regional circulation changes are consistent with Clayton’s 1901 cold-cored eclipse cyclone hypothesis, which may be related to the anecdotal ‘eclipse wind’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Now that stratospheric ozone depletion has been controlled by the Montreal Protocol1, interest has turned to the effects of climate change on the ozone layer. Climate models predict an accelerated stratospheric circulation, leading to changes in the spatial distribution of stratospheric ozone and an increased stratosphere-to-troposphere ozone flux. Here we use an atmospheric chemistry climate model to isolate the effects of climate change from those of ozone depletion and recovery on stratosphere-to-troposphere ozone flux and the clear-sky ultraviolet radiation index—a measure of potential human exposure to ultraviolet radiation. We show that under the Intergovernmental Panel on Climate Change moderate emissions scenario, global stratosphere-to- troposphere ozone flux increases by 23% between 1965 and 2095 as a result of climate change. During this time, the clear-sky ultraviolet radiation index decreases by 9% in northern high latitudes — a much larger effect than that of stratospheric ozone recovery — and increases by 4% in the tropics, and by up to 20% in southern high latitudes in late spring and early summer. The latter increase in the ultraviolet index is equivalent to nearly half of that generated by the Antarctic ‘ozone hole’ that was created by anthropogenic halogens. Our results suggest that climate change will alter the tropospheric ozone budget and the ultraviolet index, which would have consequences for tropospheric radiative forcing, air quality and human and ecosystem health.