822 resultados para laser optics
Resumo:
Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.
Resumo:
Generation of picosecond pulses with a peak power in excess of 7W and a duration of 24ps from a gain-switched InGaN diode laser is demonstrated for the first time.
Resumo:
A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)x125(d) x500(l) µm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10- 6/pm was obtained.
Resumo:
The tail-free operation of an overdriven gain-switched distributed feedback (DFB) laser by spectral filtering was demonstrated. The filtering was realized using a mechanically tunable fiber Bragg grating (FBG). The unfiltered and filtered signals were traced by corresponding oscilloscope. The spectral filtering removed the nonlinearly chirped components resulting in the pulse shortening. The results showed unwanted relaxation in the overdriven DFB laser were supressed by using a steep-edge notch filter.
Resumo:
A femtosecond laser was used to modify a part of the cladding of a standard LPG bend sensor. The device produced wavelength shifts depending upon the direction of bend, thus making a shape sensor.
Resumo:
Direct, point-by-point writing of fibre Bragg gratings in standard telecommunication fibre by femtosecond laser irradiation is demonstrated for the first time.
Resumo:
Structural modification m gratings inscribed point-by-point by a femtosecond laser is investigated using quantitative phase microscopy. The gratings present a central region with a depressed refractive index surrounded by an outer corona with increased index. © 2006 Optical Society of America.
Resumo:
We have observed a positive change or refractive index and formation of waveguides in YAG:Cr4+ crystals, exposed to a high-intensity femtosecond laser beam. The technique is potentially suitable for fabrication of waveguide lasers in crystal materials.
Resumo:
A direction-sensitive bend sensor in standard single-mode fiber is demonstrated for the first time based on an axially-offset fiber Bragg grating, directly written by an infrared femtosecond laser.
Resumo:
A series of symmetric and asymmetric LPGs were inscribed in photonic crystal fibre by a low repetition rate femtosecond laser system. The asymmetric LPGs were found to be spectrally sensitive to bend orientation, with some of the attenuation bands producing both red and blue wavelength shifts, whilst the symmetric devices produced only a unidirectional wavelength shift. Both sets of devices displayed strong polarisation dependence.
Resumo:
Direct measurements of the absorbed energy in femtosecond laser inscription in a range of materials is performed. Key absorption parameters are characterized by fitting numerical modelling to measurements.
Resumo:
We present a diffractive phase variable attenuator for femtosecond laser radiation control. It allows the control of beam power up to 0.75 10 <sup>13</sup> W/cm<sup>2</sup> without introducing serious distortions in spectra and beam shape while it operates in zero order diffraction. The attenuator can operate with wavelengths from DUV to IR. © 2009 Optical Society of America.
Resumo:
The modified polarization spectroscopy method was applied for determination of angular momenta of autoionizing states of Pu in multistep resonance ionization processes. In comparison with the known one, our method does not require circular polarization at all, only linear polarizations are needed. This simplicity was reached using a three-dimensional excitation geometry. Angular momenta of nine new autoionizing <sup>242</sup>Pu states were determined. The method suggested could be applied for efficiency improvement in multistep RIMS applications as well as for the odd-even isotope separation for elements with a J = 0 ground state (Pu, Yb, Sm etc.).
Resumo:
We propose and demonstrate a single- and dual-wavelength switchable erbium-doped fiber laser (EDFL) by utilizing intracavity polarization selective filters based on tilted fiber gratings (TFGs). In the cavity, one 45° TFG functions as an in-fiber polarizer and the other 77° TFG is used as a fiber polarization dependent loss (PDL) filter. The combined polarization effect from these two TFGs enables the laser to switch between the single- and the dual-wavelength operation with a single-polarization state at room temperature. The laser output at each wavelength shows an optical signal-to-noise ratio (OSNR) of >60 dB, a side mode suppression ratio (SMSR) of >50 dB, and a polarization extinction ratio of ~35 dB. The proposed EDFL can give stable output under laboratory conditions.