862 resultados para large-scale network
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it. This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign? The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Resumo:
A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.
Resumo:
The assessment of adolescent drinking behavior is a complex task, complicated by variability in drinking patterns, the transitory and developmental nature of the behavior and the reliance (for large scale studies) on self-report questionnaires. The Adolescent Alcohol Involvement Scale (Mayer & Filstead, 1979) is a 14-item screening tool designed to help to identify alcohol misusers or more problematic drinkers. The present study utilized a large sample (n = 4066) adolescents from Northern Ireland. Results of Confirmatory Factor Analyses and reliability estimates revealed that the 14-items share sufficient common variance that scores can be considered to be reliable and that the 14 items can be scored to provide a composite alcohol use score.
Resumo:
In today's fast-paced and interconnected digital world, the data generated by an increasing number of applications is being modeled as dynamic graphs. The graph structure encodes relationships among data items, while the structural changes to the graphs as well as the continuous stream of information produced by the entities in these graphs make them dynamic in nature. Examples include social networks where users post status updates, images, videos, etc.; phone call networks where nodes may send text messages or place phone calls; road traffic networks where the traffic behavior of the road segments changes constantly, and so on. There is a tremendous value in storing, managing, and analyzing such dynamic graphs and deriving meaningful insights in real-time. However, a majority of the work in graph analytics assumes a static setting, and there is a lack of systematic study of the various dynamic scenarios, the complexity they impose on the analysis tasks, and the challenges in building efficient systems that can support such tasks at a large scale. In this dissertation, I design a unified streaming graph data management framework, and develop prototype systems to support increasingly complex tasks on dynamic graphs. In the first part, I focus on the management and querying of distributed graph data. I develop a hybrid replication policy that monitors the read-write frequencies of the nodes to decide dynamically what data to replicate, and whether to do eager or lazy replication in order to minimize network communication and support low-latency querying. In the second part, I study parallel execution of continuous neighborhood-driven aggregates, where each node aggregates the information generated in its neighborhoods. I build my system around the notion of an aggregation overlay graph, a pre-compiled data structure that enables sharing of partial aggregates across different queries, and also allows partial pre-computation of the aggregates to minimize the query latencies and increase throughput. Finally, I extend the framework to support continuous detection and analysis of activity-based subgraphs, where subgraphs could be specified using both graph structure as well as activity conditions on the nodes. The query specification tasks in my system are expressed using a set of active structural primitives, which allows the query evaluator to use a set of novel optimization techniques, thereby achieving high throughput. Overall, in this dissertation, I define and investigate a set of novel tasks on dynamic graphs, design scalable optimization techniques, build prototype systems, and show the effectiveness of the proposed techniques through extensive evaluation using large-scale real and synthetic datasets.
Resumo:
The focus of this research is to explore the applications of the finite difference formulation based on the latency insertion method (LIM) to the analysis of circuit interconnects. Special attention is devoted to addressing the issues that arise in very large networks such as on-chip signal and power distribution networks. We demonstrate that the LIM has the power and flexibility to handle various types of analysis required at different stages of circuit design. The LIM is particularly suitable for simulations of very large scale linear networks and can significantly outperform conventional circuit solvers (such as SPICE).
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
Non-coding RNAs (ncRNAs) were recently given much higher attention due to technical advances in sequencing which expanded the characterization of transcriptomes in different organisms. ncRNAs have different lengths (22 nt to >1, 000 nt) and mechanisms of action that essentially comprise a sophisticated gene expression regulation network. Recent publication of schistosome genomes and transcriptomes has increased the description and characterization of a large number of parasite genes. Here we review the number of predicted genes and the coverage of genomic bases in face of the public ESTs dataset available, including a critical appraisal of the evidence and characterization of ncRNAs in schistosomes. We show expression data for ncRNAs in Schistosoma mansoni. We analyze three different microarray experiment datasets: (1) adult worms' large-scale expression measurements; (2) differentially expressed S. mansoni genes regulated by a human cytokine (TNF-α) in a parasite culture; and (3) a stage-specific expression of ncRNAs. All these data point to ncRNAs involved in different biological processes and physiological responses that suggest functionality of these new players in the parasite's biology. Exploring this world is a challenge for the scientists under a new molecular perspective of host-parasite interactions and parasite development.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
Most researches that have been done until today about the beneficial effects of hariparoha (Pothomorphe umbellata L. Miq) have been done with root extract of this species, but the use in large scale would compromise the sustainable exploration of this natutral resource. In this sense, the utilization of pariparoha leaves, substituting the roots, in the cosmetic industry does not put in risk the existence of the species. In this work the concentration of 4-nerolidyl-cathecol (4-NC) in leaf extract was determined by the analytical methodology validated in our laboratory. The concentration of 4-NC in leaf extract was around 30% less than that of root extract, obtained in the same way. Concerning the study of the photostability of a leaves extract solution containing 4-NC did not demonstrate meaningful alterations in the spectrometry, profile after 2 hours of exposure under UVB radiation, showing its stability under this conditions. Metalloproteinases (MMPs) cure endopeptidases that are zinc-dependent, involved in remodeling extracellular matrix (ECM), that are important in the appearance of typical photoaging wrinkles. In this work the capacity of leaf extract of P. umbellata to inhibit MMP-2 and 9 activities of hairless mouse skin in vitro by zymography gel was also evalutated. The leaf extract (0,1 mg/mL) inhibit in 80% activity of this enzymes, according to the densitometric zymography evaluation.
Resumo:
Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Ressonância Magnética
Resumo:
Currently, power systems (PS) already accommodate a substantial penetration of distributed generation (DG) and operate in competitive environments. In the future, as the result of the liberalisation and political regulations, PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage and provide market agents to ensure a flexible and secure operation. This cannot be done with the traditional PS operational tools used today like the quite restricted information systems Supervisory Control and Data Acquisition (SCADA) [1]. The trend to use the local generation in the active operation of the power system requires new solutions for data management system. The relevant standards have been developed separately in the last few years so there is a need to unify them in order to receive a common and interoperable solution. For the distribution operation the CIM models described in the IEC 61968/70 are especially relevant. In Europe dispersed and renewable energy resources (D&RER) are mostly operated without remote control mechanisms and feed the maximal amount of available power into the grid. To improve the network operation performance the idea of virtual power plants (VPP) will become a reality. In the future power generation of D&RER will be scheduled with a high accuracy. In order to realize VPP decentralized energy management, communication facilities are needed that have standardized interfaces and protocols. IEC 61850 is suitable to serve as a general standard for all communication tasks in power systems [2]. The paper deals with international activities and experiences in the implementation of a new data management and communication concept in the distribution system. The difficulties in the coordination of the inconsistent developed in parallel communication and data management standards - are first addressed in the paper. The upcoming unification work taking into account the growing role of D&RER in the PS is shown. It is possible to overcome the lag in current practical experiences using new tools for creating and maintenance the CIM data and simulation of the IEC 61850 protocol – the prototype of which is presented in the paper –. The origin and the accuracy of the data requirements depend on the data use (e.g. operation or planning) so some remarks concerning the definition of the digital interface incorporated in the merging unit idea from the power utility point of view are presented in the paper too. To summarize some required future work has been identified.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores