981 resultados para killer factor, yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employed different experimental model systems to define the role of GATA4, beta-catenin, and steroidogenic factor (SF-1) transcriptional factors in the regulation of monkey luteal inhibin secretion. Reverse transcription polymerase chain reactions and western blotting analyses show high expression of inhibin-alpha, GATA4, and beta-catenin in corpus luteum (CL) of the mid-luteal phase. Gonadotropin-releasing hormone receptor antagonist-induced luteolysis model suggested the significance of luteinizing hormone (LH) in regulating these transcriptional factors. Inducible cyclic AMP early repressor mRNA expression was detected in the CL and no change was observed in different stages of CL. Following amino acid sequence analysis, interaction between SF-1 and beta-catenin in mid-stage CL was verified by reciprocal co-immunoprecipitation experiments coupled to immunoblot analysis. Electrophoretic mobility shift analysis support the role of SF-1 in regulating luteal inhibin-alpha expression. Our results suggest a possible multiple crosstalk of Wnt, cAMP, and SF-1 in the regulation of luteal inhibin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The factorization theorem for exclusive processes in perturbative QCD predicts the behavior of the pion electromagnetic form factor F(t) at asymptotic spacelike momenta t(= -Q(2)) < 0. We address the question of the onset energy using a suitable mathematical framework of analytic continuation, which uses as input the phase of the form factor below the first inelastic threshold, known with great precision through the Fermi-Watson theorem from pi pi elastic scattering, and the modulus measured from threshold up to 3 GeV by the BABAR Collaboration. The method leads to almost model-independent upper and lower bounds on the spacelike form factor. Further inclusion of the value of the charge radius and the experimental value at -2.45 GeV2 measured at JLab considerably increases the strength of the bounds in the region Q(2) less than or similar to 10 GeV2, excluding the onset of the asymptotic perturbative QCD regime for Q(2) < 7 GeV2. We also compare the bounds with available experimental data and with several theoretical models proposed for the low and intermediate spacelike region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxin-antitoxin (TA) systems are found on both bacterial plasmids and chromosomes, but in most cases their functional role is unclear. Gene knockouts often yield limited insights into functions of individual TA systems because of their redundancy. The well-characterized F-plasmid-based CcdAB TA system is important for F-plasmid maintenance. We have isolated several point mutants of the toxin CcdB that fail to bind to its cellular target, DNA gyrase, but retain binding to the antitoxin, CcdA. Expression of such mutants is shown to result in release of the WT toxin from a functional preexisting TA complex as well as derepression of the TA operon. One such inactive, active-site mutant of CcdB was used to demonstrate the contribution of CcdB to antibiotic persistence. Transient activation of WT CcdB either by coexpression of the mutant or by antibiotic/heat stress was shown to enhance the generation of drug-tolerant persisters in a process dependent on Lon protease and RecA. An F-plasmid containing a ccd locus can, therefore, function as a transmissible persistence factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we employ message passing algorithms over graphical models to jointly detect and decode symbols transmitted over large multiple-input multiple-output (MIMO) channels with low density parity check (LDPC) coded bits. We adopt a factor graph based technique to integrate the detection and decoding operations. A Gaussian approximation of spatial interference is used for detection. This serves as a low complexity joint detection/decoding approach for large dimensional MIMO systems coded with LDPC codes of large block lengths. This joint processing achieves significantly better performance than the individual detection and decoding scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate upper and lower bounds on the modulus of the pion electromagnetic form factor on the unitarity cut below the omega pi inelastic threshold, using as input the phase in the elastic region known via the Fermi-Watson theorem from the pi pi P-wave phase shift, and a suitably weighted integral of the modulus squared above the inelastic threshold. The normalization at t = 0, the pion charge radius and experimental values at spacelike momenta are used as additional input information. The bounds are model independent, in the sense that they do not rely on specific parametrizations and do not require assumptions on the phase of the form factor above the inelastic threshold. The results provide nontrivial consistency checks on the recent experimental data on the modulus available below the omega pi threshold from e(+)e(-) annihilation and tau-decay experiments. In particular, at low energies the calculated bounds offer a more precise description of the modulus than the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During meiosis, long-range interaction between homologous chromosomes is thought to be crucial for homology recognition, exchange of DNA strands, and production of normal haploid gametes. However, little is known about the identity of the proteins involved and the actual molecular mechanism(s) by which chromosomes recognize and recombine with their appropriate homologous partners. Single-molecule analyses have the potential to provide insights into our understanding of this fascinating and long-standing question. Using atomic force microscopy and magnetic tweezers techniques, we discovered that Hop1 protein, a key structural component of Saccharomyces cerevisiae synaptonemal complex, exhibits the ability to bridge noncontiguous DNA segments into intramolecular stem-loop structures in which the DNA segments appear to be fully synapsed within the filamentous protein stems. Additional evidence suggests that Hop1 folds DNA into rigid protein DNA filaments and higher-order nucleoprotein structures. Importantly, Hop1 promotes robust intra- and intermolecular synapsis between double-stranded DNA molecules, suggesting that juxtaposition of DNA sequences may assist in strand exchange between homologues by recombination-associated proteins. Finally, the evidence from ensemble experiments is consistent with the notion that Hop1 causes rigidification of DNA molecules. These results provide the first direct evidence for long-range protein-mediated DNA DNA synapsis, independent of crossover recombination, which is presumed to occur during meiotic recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the pion electromagnetic form factor at t = 0 by exploiting the recently evaluated two-pion contribution to the muon (g -aEuro parts per thousand 2) and the phase of the pion electromagnetic form factor in the elastic region, known from pi pi scattering by Fermi-Watson theorem and the values of the form factor at several points in the space-like region. Regions in the complex t-plane are isolated where the form factor cannot have zeros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs EGF (epidermal growth factor)-like-repeats] 11-12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21-30 and the ELRs 11-15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21-30 and ELRs 11-15 is similar to 10-fold stronger than that between ELRs 11-15 and the ligands. Although there was no interaction between Notch 1 ELRs 21-30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21-30 and 11-15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21-30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25-26 being the most effective. These results suggest that the ELRs 25-26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11-12 are the principal ligand-binding site, the ELRs 25-26 serve as a secondary binding site and play an important role in receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle development is a multistep process which includes myoblast diversification, proliferation, migration, fusion, differentiation and growth. A hierarchical exhibition of myogenic factors is important for dexterous execution of progressive events in muscle formation. EWG (erect wing) is a transcription factor known to have a role in indirect flight muscle development (IFM) in Drosophila. We marked out the precise spatio-temporal expression profile of EWG in the myoblasts, and in the developing muscles. Mutant adult flies null for EWG in myoblasts show variable number of IFM, suggesting that EWG is required for patterning of the IFM. The remnant muscle found in the EWG null flies show proper assembly of the structural proteins, which implies that some myoblasts manage to fuse, develop and differentiate normally indicating that EWG is not required for differentiation program per se. However, when EWG expression is extended beyond its expression window in a wild type background, muscle thinning is observed implying EWG function in protein synthesis inhibition. Mis-expression studies in wing disc myoblasts hinted at its role in myoblast proliferation. We thus conclude that EWG is important for regulating fusion events which in turn decides the IFM pattern. Also IFM in EWG null mutants show clumps containing broken fibres and an altered mitochondrial morphology. The vertebrate homolog of EWG is nuclear respiratory factor1 (NRF1) which is known to have a function in mitochondrial biogenesis and protection against oxidative stress. Gene expression for inner mitochondrial membrane protein, Opa1-like was found to be absent in these mutants. Also, these flies were more sensitive to oxidative stress, indicating a compromised mitochondrial functioning. Our results therefore demonstrate that EWG functions in maintaining muscles’ structural integrity by ensuing proper mitochondrial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional axis parallel boxes in Rk. Equivalently, it is the minimum number of interval graphs on the vertex set V such that the intersection of their edge sets is E. It is known that boxicity cannot be approximated even for graph classes like bipartite, co-bipartite and split graphs below O(n0.5-ε)-factor, for any ε > 0 in polynomial time unless NP = ZPP. Till date, there is no well known graph class of unbounded boxicity for which even an nε-factor approximation algorithm for computing boxicity is known, for any ε < 1. In this paper, we study the boxicity problem on Circular Arc graphs - intersection graphs of arcs of a circle. We give a (2+ 1/k)-factor polynomial time approximation algorithm for computing the boxicity of any circular arc graph along with a corresponding box representation, where k ≥ 1 is its boxicity. For Normal Circular Arc(NCA) graphs, with an NCA model given, this can be improved to an additive 2-factor approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity is O(mn+n2) in both these cases and in O(mn+kn2) which is at most O(n3) time we also get their corresponding box representations, where n is the number of vertices of the graph and m is its number of edges. The additive 2-factor algorithm directly works for any Proper Circular Arc graph, since computing an NCA model for it can be done in polynomial time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative levels of different sigma factors dictate the expression profile of a bacterium. Extracytoplasmic function sigma factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function sigma factors is regulated by the localization of this protein in a sigma/anti-sigma complex. Anti-sigma factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-sigma domain (ASD) that binds a sigma factor. Here we describe the structure of Mycobacterium tuberculosis anti-sigma(D) (RsdA) in complex with the -35 promoter binding domain of sigma(D) (sigma(D)(4)). We note distinct conformational features that enable the release of sigma(D) by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the sigma(D)/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern sigma/anti-sigma interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant AAV-8 vectors have shown significant promise for hepatic gene therapy of hemophilia B. However, the theme of AAV vector dose dependent immunotoxicity seen with AAV2 vectors earlier seem to re-emerge with AAV8 vectors as well. It is therefore important to develop novel AAV8 vectors that provide enhanced gene expression at significantly less vector doses. We hypothesized that AAV8 during its intracellular trafficking, are targeted for destruction in the cytoplasm by the host-cellular kinase/ubiquitination/proteasomal degradation machinery and modification of specific serine/threonine kinase or ubiquitination targets on AAV8 capsid (Fig.1A) may improve its transduction efficiency. To test this, point mutations at specific serine (S)/threonine (T) > alanine (A) or lysine (K)>arginine (R) residues were generated on AAV8 capsid. scAAV8-EGFP vectors containing the wild-type (WT) and each one of the 5 S/T/K-mutant(S276A, S501A, S671A, T251A and K137R) capsids were evaluated for their liver transduction efficiency at a dose of 5 X 1010 vgs/ animal in C57BL/6 mice in vivo. The best performing mutant was found to be the K137R vector in terms of either the gene expression (46-fold) or the vector copy numbers in the hepatocytes (22-fold) compared to WT-AAV8 (Fig.1B). The K137R-AAV8 vector that showed significantly decreased ubiquitination of the viral capsid had reduced activation of markers of innate immune response [IL-6, IL-12, tumor necrosis factor α, Kupffer cells and TLR-9]. In addition, animals injected with the K137R mutant also demonstrated decreased (2-fold) levels of cross-neutralizing antibodies when compared to animals that received the WT-AAV8 vector. To study further the utility of the novel AAV8-K137R mutant in a therapeutic setting, we delivered human coagulation factor IX (h.FIX) under the control of liver specific promoters (LP1 or hAAT) at two different doses (2.5x10^10 and 1x10^11 vgs per mouse) in 8-12 weeks old male C57BL/6 mice. As can be seen in Fig.1C/D, the circulating levels of h.FIX were higher in all the K137R-AAV8 treated groups as compared to the WT-AAV8 treated groups either at 2 weeks (62% vs 37% for hAAT constructs and 47% vs 21% for LP1 constructs) or 4 weeks (78% vs 56% for hAAT constructs and 64% vs 30% for LP1 constructs) post hepatic gene transfer. These studies demonstrate the feasibility of the use of this novel vector for potential gene therapy of hemophilia B.