972 resultados para intense exercise
Resumo:
Perceptions of exercise among nonattenders of cardiac rehabilitation (CR) were explored using semistructured interviews. Analysis indicated that participants did not recognize the cardiovascular benefits of exercise, and perceived keeping
active through daily activities as sufficient for health. Health professionals were perceived to downplay the importance of exercise and CR, and medication was viewed as being more important than exercise for promoting health. The content of CR programmes and the benefits of exercise need to be further explained to patients post-MI, and in a manner that communicates to patients that these programmes are valued by significant others, particularly health professionals.
Resumo:
Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10(16)W cm(-2) at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion.
Resumo:
Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.
Resumo:
A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10(13) W cm(-2) are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1s sigma ground state of the D-2 precursor is projected onto the available electronic states in D-2(+) (1s sigma(g) ground and 2p sigma(u) dissociative) and D+ + D+ (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1s sigma(g) potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established femtochemistry and coherent control techniques are explored.
Resumo:
Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (greater than or similar to 10(19) W cm(-2)) short (similar to 1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices.
Resumo:
We present high-accuracy calculations of ionization rates of helium at UV (195 nm) wavelengths. The data are obtained from full-dimensionality integrations of the helium-laser time-dependent Schrödinger equation. Comparison is made with our previously obtained data at 390 nm and 780 nm. We show that scaling laws introduced by Parker et al extend unmodified from the near-infrared limit into the UV limit. Static-field ionization rates of helium are also obtained, again from time-dependent full-dimensionality integrations of the helium Schrödinger equation. We compare the static-field ionization results with those of Scrinzi et al and Themelis et al, who also treat the full-dimensional helium atom, but with time-independent methods. Good agreement is obtained.
Resumo:
We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.