952 resultados para infrared spectroscopy, phosphate, Raman spectroscopy, triplite, triploidite, zwieselite


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured films of dioctadecyldimethylammonium bromide (DODAB) and nickel tetrasulfonated phthalocyanine (NiTsPc) were layer-by-layer (LbL) assembled to achieve a synergistic effect considering the distinct properties of both materials. Prior to LbL growth, the effect of NiTsPc on the structure of DODAB vesicles in aqueous medium was investigated by differential scanning calorimetry (DSC). Therefore, DODAB/NiTsPc LbL films were prepared using NiTsPc at concentrations below and above the limit concentration of vesicle formation according to our DSC experiments. As a result, LbL films with distinct nanostructures were obtained, which were studied at micro and nanoscales by micro-Raman and atomic force microscopy, respectively. A linear growth of the LbL films was observed by ultraviolet-visible absorption spectroscopy. However, the bilayer thickness and the surface morphology of the LbL films were radically affected depending on NiTsPc concentration. The electrostatic interaction between DODAB and NiTsPc was identified via Fourier transform infrared (FTIR) absorption spectroscopy as the main driving force responsible for LbL growth. Because LbL films have been widely applied as transducers in sensing devices, DODAB/NiTsPc LbL films having distinct nanostructures were tested as proof-of-principle in preliminary sensing experiments toward dopamine detection using impedance spectroscopy (e-tongue system). The real capacitance vs. dopamine concentration curves were treated using Principal Component Analysis (PCA) and an equivalent electric circuit, revealing the role played by the LbL film nanostructure and the possibility of building calibration curves. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoelectrochemical properties of FTO/BiVO4 electrode were investigated in different electrolytic solutions, potassium chloride (KCl) and sodium sulphate (Na2SO4), and under visible light irradiation condition. In order to accomplish that, an FTO/BiVO4 electrode was built by combining the solution combustion synthesis technique with the dip-coating deposition process. The morphology and structure of the BiVO4 electrode were investigated through X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Photoelectrochemical properties were analyzed through chronoamperometry measurements. Results have shown that the FTO/BiVO4 electrode presents higher electroactivity in the electrolyte Na2SO4, leading to better current stabilization, response time, and photoinduced current density, when compared to KCl electrolyte. Besides, this electrode shows excellent performance for methylene blue degradation under visible light irradiation condition. In Na2SO4, the electrode has shown higher degradation rate, 51 %, in contrast to 44 % in KCl, plus higher rate constant, 174 × 10-4 min-1 compared to 150 × 10-4 min-1 in KCl. Results presented in this communication leads to the indication of BiVO4 thin films as alternate materials to use in heterogeneous photoelectrocatalysis, more specifically in decontamination of surface water. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, thermoplastic starch (TPS)-clay bionanocomposites were obtained by an innovative methodology using a combination of methodologies commonly used in the composites and nanocomposites preparations. The main objectives or novelties were to confirm efficiency of the processing methodology by field emission gun scanning electron microscopy and investigate the effect of clay content on the spectroscopic, bulk and surface hydrophilic/hydrophobic properties of these bionanocomposites. Raman and FTIR spectroscopies confirmed the changes in the spectroscopic properties of the TPS bionanocomposites with the addition of the clay materials. Water absorption and contact angle measurements were also used to analyze the effect of the clay content on the hydrophilic properties of the TPS bionanocomposites. The results also showed that the addition of the cloisite-Na+ clay increased the bulk and surface hydrophobicities of the TPS matrix, which may increase its industrial application, particularly in manufacturing of food containers. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe 3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g- 1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IBILCE