983 resultados para inductively coupled plasma
Resumo:
Millennial-scale records of planktonic foraminiferal Mg/Ca, bulk sediment UK37', and planktonic foraminiferal d18O are presented across the last two deglaciations in sediment core NIOP929 from the Arabian Sea. Mg/Ca-derived temperature variability during the penultimate and last deglacial periods falls within the range of modern day Arabian Sea temperatures, which are influenced by monsoon-driven upwelling. The UK37'-derived temperatures in MIS 5e are similar to modern intermonsoon values and are on average 3.5°C higher than the Mg/Ca temperatures in the same period. MIS 5e UK37' and Mg/Ca temperatures are 1.5°C warmer than during the Holocene, while the UK37'-Mg/Ca temperature difference was about twice as large during MIS 5e. This is surprising as, nowadays, both proxy carriers have a very similar seasonal and depth distribution. Partial explanations for the MIS 5e UK37'-Mg/Ca temperature offset include carbonate dissolution, the change in dominant alkenone-producing species, and possibly lateral advection of alkenone-bearing material and a change in seasonal or depth distribution of proxy carriers. Our findings suggest that (1) Mg/Ca of G. ruber documents seawater temperature in the same way during both studied deglaciations as in the present, with respect to, e.g., season and depth, and (2) UK37'-based temperatures from MIS 5 (or older) represent neither upwelling SST nor annual average SST (as it does in the present and the Holocene) but a higher temperature, despite alkenone production mainly occurring in the upwelling season. Further we report that at the onset of the deglacial warming, the Mg/Ca record leads the UK37' record by 4 ka, of which a maximum of 2 ka may be explained by postdepositional processes. Deglacial warming in both temperature records leads the deglacial decrease in the d18O profile, and Mg/Ca-based temperature returns to lower values before d18O has reached minimum interglacial values. This indicates a substantial lead in Arabian Sea warming relative to global ice melting.
Resumo:
Elemental concentrations were determined on 21 samples from Hole 1215A to evaluate the influence of hydrothermal sources on bulk sediment composition. Rare earth element (REE) concentrations were also determined on 10 of these samples. Concentration profiles and REE patterns are consistent with a strong hydrothermal influence on sediment composition at the base of Hole 1215A.
Resumo:
Sand-sized basaltic glass fragments were recovered in the liner of Core 203-1243B-19R, the deepest recovery from Hole 1243B. Microprobe analysis of 582 glassy cuttings cluster into five compositionally distinct groups, most of which are unlike the lithologic units described on board ship. Drilling operations intended to sweep cuttings from the caving hole and differences between the cuttings and geochemically distinct lithologic units of the upper part of the basement indicate that the cuttings came mainly, if not entirely, from the lower part of the hole. They give information about the part of Hole 1243B that had poor core recovery. Enriched mid-ocean-ridge basalt (MORB) from the upper part of the hole and transitional MORB from two groups of cuttings from sources low in the hole may be a trace of the Galápagos plume on the Pacific plate or may be a normal consequence of eruptions from two distinct magmas on fast-spreading crust.
Resumo:
The basalts recovered during Legs 183 and 120 from the southern, central, and northernmost parts of the Kerguelen Plateau (Holes 1136A, 1138A, 1140A, and 747C, respectively), as well as those recovered from the eastern part of the crest of Elan Bank (Hole 1137A), represent derivates from tholeiitic melts. In the northern part of the Kerguelen Plateau (Hole 1140A), basalts may have formed from two sources located at different depths. This is reflected in the presence of both low- and high-titanium basalts. The basalts are variably altered by low-temperature hydrothermal processes (at temperatures up to 120°C), and some are affected by subaerial weathering. The hydrothermal alteration led mainly to the formation of smectites, chlorite minerals, mixed-layer hydromica-smectite and smectite-chlorite minerals, hydromica, serpentine(?), clinoptilolite, heulandite, stilbite, analcime, mordenite, thomsonite, natrolite(?), calcite, quartz, and dickite(?). Alteration of extrusive basalts is mainly related to horizontal fluid flow within permeable contact zones between lava flows. Under a nonoxidizing environment of alteration, the tendency to lose most of elements, including rare earth elements, from basalts dominates. Under on oxidizing environment, basalts accumulate many elements.
Resumo:
Eight DSDP/ODP cores were analyzed for major ion concentrations and d37Cl values of water-soluble chloride (d37Clwsc) and structurally bound chloride (d37Clsbc) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition. The average total Cl content of all 86 samples is 0.26±0.16 wt.% (0.19±0.10 wt.% as water-soluble Cl (Xwsc) and 0.09±0.09 wt.% as structurally bound Cl (Xsbc)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl**- site and the water-soluble Cl**- site varies from -1.08? to +1.16?, averaging to +0.21?. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk d37Cl values (+0.05? to +0.36?); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk d37Cl values (-1.26? and -0.54?). The cores with negative d37Cl values also have variable Cl**-/SO4**2- ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ~1? with depth for both the water-soluble and structurally bound Cl fractions. Non-zero bulk d37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive d37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low d37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative d37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.
Resumo:
Al, K, Sc and Ti concentrations of the terrestrial material-dominant sediments from ODP site 1144 were reported. Comparison between the bulk and the acid-leached sediments indicates that about 20~30% of the Al, K and Sc in the bulk sediments are not hosted in terrestrial detritus, rather they are of authigenic origin. However, authigenic Ti is negligible. The results indicate that Ti rather than Al is the best proxy for terrestrial materials. Significant climate controls are displayed in the Al/Ti, K/Ti and Sc/Ti variation patterns both for the bulk and the acid leached sediments. Such variation patterns can be mainly accounted for in terms of climate change in their provenance areas in South China. Elevated Al/Ti, K/Ti and Sc/Ti ratios during interglacial periods indicate that chemical weathering then was stronger than during glacial periods, which might be related to a more humid climate in interglacial periods.
Resumo:
The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO4, HCO3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,=1000 years). The extensive diagenetic processes in the Tonga margin were mostly caused by the recent intrusion of andesite sills and dikes into the Miocene sediments.
Resumo:
An investigation of ~1-m.y.-old dikes and lavas from the north wall of the Hess Deep Rift (2°15'N, 101°30'W) collected during Alvin expeditions provides a detailed view of the evolution of fast spreading oceanic crust. The study area encompasses 25 km of an east-west flow line, representing ~370,000 years of crustal accretion at the East Pacific Rise. Samples analyzed exhibit depleted incompatible trace element abundances and ratios [(La/Sm)N < 1]. Indices of fractionation (MgO), and incompatible element ratios (La/Sm, Nb/Ti) show no systematic trends along flow line. Rather, over short (<4 m) and long (~25 km) distances, significant variations are observed in major and trace element concentrations and ratios. Modeling of these variations attests to the juxtaposition of dikes of distinct parental magma compositions. These findings, combined with studies of segmentation of the subaxial magma chamber and lateral magma transport in dikes along rift-dominated systems, suggest a more realistic model of the magmatic system underlying the East Pacific Rise relative to the commonly assumed twodimensional model. In this model, melts from a heterogeneous mantle feed distinct portions of a segmented axial magma reservoir. Dikes emanating from these distinct reservoirs transport magma along axis, resulting in interleaved dikes and host lavas with different evolutionary histories. This model suggests the use of axial or flow line lava compositions to infer the evolution of axial magma chambers should be approached with caution because dikes may never erupt lava or may transport magma significant distances along axis and erupt lavas far from their axial magma chamber of origin.
Resumo:
This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.
Resumo:
ODP Site 1237 and sediment core RRV9702a-69PC were investigated for siliciclastic grain-size distributions and changes in geochemical composition to reconstruct southeast trade-wind variability during the past 5 Ma. Because both, working and archive halves of all ODP Site 1237 cores were completely depleted between 3.3 and 8.1 meters composite depths, (mcd), the corresponding sections of pre-site survey core RRV9702A-69PC were sampled and investigated to fill the gap.
Resumo:
Nd and Pb isotopic compositions extracted from bulk deep sea sediments have been shown to be robust proxies for deep water circulation as well as weathering provenance and intensity over geologically young time scales. In this study we evaluated ten deep sea samples from Ocean Drilling Program (ODP) site 1090 ranging in age from mid Eocene to early-Miocene to test whether Pb isotopic compositions extracted from geologically older sediments record reliable seawater isotopic ratios and to evaluate the source of the extracted Pb. The sequential extraction protocol used in this study is similar to protocols reported for previous studies and produces acetic acid, hydroxylamine hydrochloride (HH) and residue fractions. Each extracted fraction was analyzed for Pb isotopes, rare earth elements (REEs), and a suite of major elements. Similar 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios are recorded from the acetic acid and HH fractions for ~70-80% of the samples, suggesting that either the acetic acid dissolves Fe-Mn oxides or multiple phases are recording the same seawater isotopic value. Several indirect tests, such as Al mass balance, comparison of Sr isotopes in HH extracts to contemporaneous seawater Sr isotopes, and comparison of Nd isotopic compositions in HH extracts to published fossil fish teeth values, provide evidence that Pb isotopic compositions measured in our bulk HH extracts record bottom water values. The relationship between Pb, Mn and Ca concentrations in HH fractions indicates that Fe-Mn oxides and a Mn-bearing carbonate are the dominant phases contributing seawater Pb. Comparison of REE patterns derived from the HH fraction and total digestions of Fe-Mn nodule standards reveals that the trivalent REEs exhibit patterns consistent with the parent archive, but Ce can be fractionated during extraction. Ratios of REEs also produce unique fields for each fraction and can be used to test the purity of the seawater signal of the extraction protocol. Finally, an initial evaluation of Pb isotopic compositions in fossil fish indicates that this archive is not suitable for bottom water Pb isotope studies.