972 resultados para immunoglobulin blood level
Multicentre evaluation of a new point-of-care test for the determination of NT-proBNP in whole blood
Resumo:
BACKGROUND: The Roche CARDIAC proBNP point-of-care (POC) test is the first test intended for the quantitative determination of N-terminal pro-brain natriuretic peptide (NT-proBNP) in whole blood as an aid in the diagnosis of suspected congestive heart failure, in the monitoring of patients with compensated left-ventricular dysfunction and in the risk stratification of patients with acute coronary syndromes. METHODS: A multicentre evaluation was carried out to assess the analytical performance of the POC NT-proBNP test at seven different sites. RESULTS: The majority of all coefficients of variation (CVs) obtained for within-series imprecision using native blood samples was below 10% for both 52 samples measured ten times and for 674 samples measured in duplicate. Using quality control material, the majority of CV values for day-to-day imprecision were below 14% for the low control level and below 13% for the high control level. In method comparisons for four lots of the POC NT-proBNP test with the laboratory reference method (Elecsys proBNP), the slope ranged from 0.93 to 1.10 and the intercept ranged from 1.8 to 6.9. The bias found between venous and arterial blood with the POC NT-proBNP method was < or =5%. All four lots of the POC NT-proBNP test investigated showed excellent agreement, with mean differences of between -5% and +4%. No significant interference was observed with lipaemic blood (triglyceride concentrations up to 6.3 mmol/L), icteric blood (bilirubin concentrations up to 582 micromol/L), haemolytic blood (haemoglobin concentrations up to 62 mg/L), biotin (up to 10 mg/L), rheumatoid factor (up to 42 IU/mL), or with 50 out of 52 standard or cardiological drugs in therapeutic concentrations. With bisoprolol and BNP, somewhat higher bias in the low NT-proBNP concentration range (<175 ng/L) was found. Haematocrit values between 28% and 58% had no influence on the test result. Interference may be caused by human anti-mouse antibodies (HAMA) types 1 and 2. No significant influence on the results with POC NT-proBNP was found using volumes of 140-165 muL. High NT-proBNP concentrations above the measuring range of the POC NT-proBNP test did not lead to false low results due to a potential high-dose hook effect. CONCLUSIONS: The POC NT-proBNP test showed good analytical performance and excellent agreement with the laboratory method. The POC NT-proBNP assay is therefore suitable in the POC setting.
Resumo:
PURPOSE: A microangiographical technique is described, which allows visualization of small and capillary blood vessels and quantification of fasciocutaneous blood vessels by means of digital computer analysis in very small laboratory animals. MATERIALS AND METHODS: The left carotid artery of 20 nu/nu mice was cannulated (26 gauge) and a mixture of gelatin, bariumsulfate, and green ink was injected according to standardized protocol. Fasciocutaneous blood vessels were visualized by digital mammography and analyzed for vessel length and vessel surface area as standardized units [SU] by computer program. RESULTS: With the described microangiography method, fasciocutaneous blood vessels down to capillary size level can be clearly visualized. Regions of interest (ROIs) can be defined and the containing vascular network quantified. Comparable results may be obtained by calculating the microvascular area index (MAI) and the microvascular length index (MLI), related to the ROIs size. Identical ROIs showed a high reproducibility for measured [SU] < 0.01 +/- 0.0012%. CONCLUSION: Combining microsurgical techniques, pharmacological knowledge, and modern digital image technology, we were able to visualize small and capillary blood vessels even in small laboratory animals. By using our own computer analytical program, quantification of vessels was reliable, highly reproducible, and fast.
Resumo:
The aim of all efforts to reduce the need of allogeneic blood transfusions is to avoid associated risks. There should particularly be a favourable effect according to the rate of transfusion-transmitted virus infections and immunological side-effects. The acceptance of an individually adjusted lowest haematocrit level and the minimisation of intra-operative blood loss by the application of optimal surgical techniques are among the most essential strategies to reduce or even avoid allogeneic blood transfusions. In addition the following interventions are generally accepted: Preoperative autologous blood donation, where appropriate supported by erythropoietin Preoperative haemodilution, where appropriate supported by erythropoietin Intra- and postoperative blood salvage Topical or systemic pharmacologic interventions to accelerate haemostasis Controlled hypotension Efficacy and indication of the different measures always depend on the individual circumstances of the specific patient. Therefore one should develop an individual approach for every case. In this context the most important subjects are an optimal coordination and if required an appropriate combination of the discussed methods. Algorithms which preoperatively allow approximate calculation of expected transfusion need may be a meaningful tool to facilitate blood conservation planning. However, at the same time one must consider that all strategies to reduce allogeneic transfusion needs are also associated with particular risks. Therefore one has to weigh carefully the pros and cons prior to their application, including the possible alternative of allogeneic transfusion in one's decision making process.
Resumo:
BACKGROUND: Human intravenous immunoglobulin (IVIg) preparations are used for the treatment of autoimmune and allergic diseases. Natural autoantibodies are believed to contribute to IVIg-mediated anti-inflammatory effects. OBJECTIVE: To address the question of whether IVIg preparations contain anti-sialic acid-binding Ig-like lectin-8 (anti-Siglec-8) autoantibodies. METHODS: The presence of possible anti-Siglec-8 autoantibodies in IVIg preparations was first examined by functional eosinophil death and apoptosis assays. Specificity of IVIg effects was shown by depleting anti-Siglec-8 autoantibodies from IVIg. Binding of purified anti-Siglec-8 autoantibodies to recombinant Siglec-8 was demonstrated by an immunodot assay. RESULTS: IVIg exerts cytotoxic effects on purified human blood eosinophils. Both potency and efficacy of the IVIg-mediated eosinophil killing effect was enhanced by IL-5, granulocyte/macrophage colony-stimulating factor, IFN-gamma, TNF-alpha, and leptin. Similarly, inflammatory eosinophils obtained from patients suffering from the hypereosinophilic syndrome (HES) demonstrated increased Siglec-8 cytotoxic responses when compared with normal blood eosinophils. Pharmacologic blocking experiments indicated that the IVIg-mediated additional eosinophil death in the presence of cytokines is largely caspase-independent, but it depends on reactive oxygen species. Anti-Siglec-8 autoantibody-depleted IVIg failed to induce caspase-independent eosinophil death. CONCLUSION: IVIg preparations contain natural anti-Siglec-8 autoantibodies. CLINICAL IMPLICATIONS: Anti-Siglec-8 autoantibodies present in IVIg preparations may have therapeutic relevance in autoimmune and allergic diseases, respectively, such as Churg-Strauss syndrome.
Resumo:
BACKGROUND: Intermittent (IT) and continuous (CT) thermodilution and esophageal Doppler (ED), are all used for hemodynamic monitoring. The aim of this study was to test the agreement between these methods during endotoxin (ET) and dobutamine infusion. METHODS: Twenty-two pigs (39 +/- 1.8 kg body weight) were randomized to general anesthesia and either continuous ET (n = 9) or placebo (PL, n = 13) infusion. After 18 hours of ET or PL infusion, the animals were further randomized to receive dobutamine (n = 3 in ET, n = 5 in PL) or PL. A set of measurements using the three methods were obtained every hour, and the relative blood flow changes between two subsequent measurements were calculated. RESULTS: Bias or limits of agreement for flows were 0.73 L/min or 1.80 L/min for IT and CT, -0.33 L/min or 4.29 L/min for IT and ED, and -1.06 or 3.94 for CT and ED (n = 515, each). For flow changes they were 1% or 44%, 2% or 59%, and 3% or 45%, respectively. Bias and limits of agreement did not differ in ET- and PL-treated animals or in animals with or without dobutamine. Despite significant correlation between any two methods, the respective correlation coefficients (r) were small (IT vs. CT: 0.452; IT vs. ED: 0.042; CT vs. ED: 0.069; all p < 0.001). The same directional changes were measured by any two methods in 49%, 40%, and 50%. When IT flows >5 L/min were compared with IT flows =5 L/min, the latter had 49% (p < 0.001), 23% (p < 0.001), and 24% smaller limits of agreement than the former (p = 0.012). CONCLUSION: IT and CT cardiac output agree only to a moderate level, and agreement between the respective relative blood flow changes is even worse. ED has poor agreement with both thermodilution methods, especially when cardiac output is >5 L/min.
Resumo:
OBJECTIVE: To investigate whether intermittent pneumatic compression (IPC) augments skin blood flow through transient suspension of local vasoregulation, the veno-arteriolar response (VAR), in healthy controls and in patients with peripheral arterial disease (PAD). METHODS: Nineteen healthy limbs and twenty-two limbs with PAD were examined. To assess VAR, skin blood flow (SBF) was measured using laser Doppler fluxmetry in the horizontal and sitting positions and was defined as percentage change with postural alteration [(horizontal SBF--sitting SBF)/horizontal SBF x 100]. On IPC application to the foot, the calf, or both, SBF was measured with laser Doppler fluxmetry, the probe being attached to the pulp of the big toe. RESULTS: Baseline VAR was higher in the controls 63.8 +/- 6.4% than in patients with PAD (31.7 +/- 13.4%, P = .0162). In both groups SBF was significantly higher with IPC than at rest (P < .0001). A higher percentage increase with IPC was demonstrated in the controls (242 +/- 85% to 788 +/- 318%) than in subjects with PAD, for each one of the three different IPC modes investigated (98 +/- 33% to 275 +/- 72%) with IPC was demonstrated. The SBF enhancement with IPC correlated with VAR for all three compression modes (r = 0.58, P = .002 for calf compression, r = 0.65, P < .0001 for foot compression alone, and r = 0.64, P = .0002 for combined foot and calf compression). CONCLUSION: The integrity of the veno-arteriolar response correlates with the level of skin blood flow augmentation generated with intermittent pneumatic compression, indicating that this may be associated with a transient suspension of the autoregulatory vasoconstriction both in healthy controls and in patients with PAD.
Resumo:
OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.
Resumo:
BACKGROUND: Although urinalysis is simple and inexpensive to perform, the finding of microhaematuria on urinalysis may be unreliable for diagnosing urolithiasis. OBJECTIVE: To evaluate microhaematuria as a diagnostic marker for urolithiasis compared with low-dose unenhanced multidetector computed tomography (MDCT) as the "gold standard". SETTING: A level 1 emergency department in a tertiary referral university teaching hospital. DESIGN: Retrospective analysis. METHODS: A study was undertaken to assess whether the finding of microhaematuria was diagnostic for urolithiasis using a low-dose unenhanced MDCT-based diagnosis as the reference standard by reviewing the records of all patients who presented to the emergency department with colicky flank pain and underwent a CT scan between January 2003 and December 2005. RESULTS: Urolithiasis was present (as defined by low-dose unenhanced MDCT) in 507/638 patients (79%); 341/638 (53%) were true positive for urolithiasis, 76 (12%) were true negative, 55 (9%) were false positive and 166 (26%) were false negative. Microhaematuria as a test for urolithiasis in patients presenting to the emergency department therefore has a sensitivity, specificity, positive predictive value and negative predictive value of 67%, 58%, 86% and 31%, respectively. 58% of the urinalysis results were negative for haematuria in the subset of patients with significant alternative diagnoses. CONCLUSIONS: The sensitivity, specificity and negative predictive value of microhaematuria on urinalysis for urolithiasis using unenhanced MDCT as the reference standard were low. This suggests that, when urolithiasis is clinically suspected, unenhanced MDCT is indicated without urinalysis being a prerequisite.
Resumo:
Intravenous immunoglobulin (IVIg) preparations are derived from pooled plasma from up to 60,000 healthy human donors and reflect the immunologic experience of the donor population. IVIg contains monomeric and dimeric IgG populations which are in a dynamic equilibrium depending on concentration, pH, temperature, donor pool size, time and stabilizers added in order to keep the portion of dimeric IgG below a certain level. In the present study, monomeric and dimeric fractions were isolated by size exclusion chromatography. The dimeric fractions, however, showed a dynamic instability and tended to dissociate. Both dimeric and monomeric IgG fractions were acid treated (pH 4) in order to dissociate the dimeric IgG. Western-blot analysis identified a sub-population of SDS resistant IgG dimers. Furthermore, the reactivities of the fractions were tested against a panel of self- and exo-antigens. There was a marked increase in activity of the dimeric compared to the monomeric IgG fraction against various intracellular self-antigens. Our data indicates that the increased reactivities of pH 4-treated fractions can mainly be attributed to dimer dissociation, as pH 4-treated monomers do not show significantly increased activities against a range of antigens.
Resumo:
Melatonin has previously been suggested to affect hemostatic function but studies on the issue are scant. We hypothesized that, in humans, oral administration of melatonin is associated with decreased plasma levels of procoagulant hemostatic measures compared with placebo medication and that plasma melatonin concentration shows an inverse association with procoagulant measures. Forty-six healthy men (mean age 25 +/- 4 yr) were randomized, single-blinded, to either 3 mg of oral melatonin (n = 25) or placebo medication (n = 21). One hour thereafter, levels of melatonin, fibrinogen, and D-dimer as well as activities of coagulation factor VII (FVII:C) and VIII (FVIII:C) were measured in plasma. Multivariate analysis of covariance and regression analysis controlled for age, body mass index, mean arterial blood pressure, heart rate, and norepinephrine plasma level. Subjects on melatonin had significantly lower mean levels of FVIII:C (81%, 95% CI 71-92 versus 103%, 95% CI 90-119; P = 0.018) and of fibrinogen (1.92 g/L, 95% CI 1.76-2.08 versus 2.26 g/L, 95% CI 2.09-2.43; P = 0.007) than those on placebo explaining 14 and 17% of the respective variance. In all subjects, increased plasma melatonin concentration independently predicted lower levels of FVIII:C (P = 0.037) and fibrinogen (P = 0.022) explaining 9 and 11% of the respective variance. Melatonin medication and plasma concentration were not significantly associated with FVII:C and D-dimer levels. A single dose of oral melatonin was associated with lower plasma levels of procoagulant factors 60 min later. There might be a dose-response relationship between the plasma concentration of melatonin and coagulation activity.
Resumo:
Several methods to detect anti-A/B antibodies based on haemagglutination and haemolysis have been described. These methods measure predominantly anti-A/B immunoglobulin (Ig)M, whereas anti-A/B IgG and IgG subclasses are less well examined. We established a flow cytometry method (ABO-fluorescence-activated cell sorting; ABO-FACS) to quantify binding of anti-A/B IgM, IgG and IgG subclasses to human A or B red blood cells. Anti-A/B IgM were present in the majority of 120 blood donors, as expected from blood group typing. The sensitivity and specificity of anti-A/B IgM to predict the blood group was 93% and 96% respectively. Anti-A/B IgG was found in 34/38 blood group O samples (89%). Anti-B IgG in blood group A or anti-A IgG in blood group B was present in 4/28 (14%) and 1/28 (4%) samples, respectively, and absent in 26 AB sera. IgG2 was the predominant IgG subclass. The correlation of anti-A/B IgM and IgG in the ABO-FACS with haemagglutination titres was 0.870 and 0.783, respectively (n = 240; P < 0.001) whereas the comparison of ABO-FACS with ABO-enzyme-linked immunosorbent assay was less significant. In conclusion, ABO-FACS is a valid method to quantify anti-A/B IgM, IgG and IgG subclasses. It opens the possibility of isotype-specific monitoring of anti-A/B antibodies levels after ABO-incompatible solid organ and stem cell transplantation.
Resumo:
The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood-CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood-CNS barriers with focus on CNS autoimmune inflammation.
Resumo:
In multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE), dysfunction of the blood-brain barrier (BBB) leads to edema formation within the central nervous system. The molecular mechanisms of edema formation in EAE/MS are poorly understood. We hypothesized that edema formation is due to imbalanced water transport across the BBB caused by a disturbed crosstalk between BBB endothelium and astrocytes. Here, we demonstrate at the light microscopic and ultrastructural level, the loss of polarized localization of the water channel protein aquaporin-4 (AQP4) in astrocytic endfeet surrounding microvessels during EAE. AQP4 was found to be redistributed over the entire astrocytic cell surface and lost its arrangement in orthogonal arrays of intramembranous particles as seen in the freeze-fracture replica. In addition, immunostaining for the astrocytic extracellular matrix receptor beta-dystroglycan disappeared from astroglial membranes in the vicinity of inflammatory cuffs, whereas immunostaining for the dystroglycan ligands agrin and laminin in the perivascular basement membrane remained unchanged. Our data suggest that during EAE, loss of beta-dystroglycan-mediated astrocyte foot process anchoring to the basement membrane leads to loss of polarized AQP4 localization in astrocytic endfeet, and thus to edema formation in EAE.
Resumo:
OBJECTIVE: To evaluate the association between arterial blood pressure (ABP) during the first 24 h and mortality in sepsis. DESIGN: Retrospective cohort study. SETTING: Multidisciplinary intensive care unit (ICU). PATIENTS AND PARTICIPANTS: A total of 274 septic patients. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Hemodynamic, and laboratory parameters were extracted from a PDMS database. The hourly time integral of ABP drops below clinically relevant systolic arterial pressure (SAP), mean arterial pressure (MAP), and mean perfusion pressure (MPP = MAP - central venous pressure) levels was calculated for the first 24 h after ICU admission and compared with 28-day-mortality. Binary and linear regression models (adjusted for SAPS II as a measure of disease severity), and a receiver operating characteristic (ROC) analysis were applied. The areas under the ROC curve were largest for the hourly time integrals of ABP drops below MAP 60 mmHg (0.779 vs. 0.764 for ABP drops below MAP 55 mmHg; P < or = 0.01) and MPP 45 mmHg. No association between the hourly time integrals of ABP drops below certain SAP levels and mortality was detected. One or more episodes of MAP < 60 mmHg increased the risk of death by 2.96 (CI 95%, 1.06-10.36, P = 0.04). The area under the ROC curve to predict the need for renal replacement therapy was highest for the hourly time integral of ABP drops below MAP 75 mmHg. CONCLUSIONS: A MAP level > or = 60 mmHg may be as safe as higher MAP levels during the first 24 h of ICU therapy in septic patients. A higher MAP may be required to maintain kidney function.
Resumo:
INTRODUCTION: It is unclear to which level mean arterial blood pressure (MAP) should be increased during septic shock in order to improve outcome. In this study we investigated the association between MAP values of 70 mmHg or higher, vasopressor load, 28-day mortality and disease-related events in septic shock. METHODS: This is a post hoc analysis of data of the control group of a multicenter trial and includes 290 septic shock patients in whom a mean MAP > or = 70 mmHg could be maintained during shock. Demographic and clinical data, MAP, vasopressor requirements during the shock period, disease-related events and 28-day mortality were documented. Logistic regression models adjusted for the geographic region of the study center, age, presence of chronic arterial hypertension, simplified acute physiology score (SAPS) II and the mean vasopressor load during the shock period was calculated to investigate the association between MAP or MAP quartiles > or = 70 mmHg and mortality or the frequency and occurrence of disease-related events. RESULTS: There was no association between MAP or MAP quartiles and mortality or the occurrence of disease-related events. These associations were not influenced by age or pre-existent arterial hypertension (all P > 0.05). The mean vasopressor load was associated with mortality (relative risk (RR), 1.83; confidence interval (CI) 95%, 1.4-2.38; P < 0.001), the number of disease-related events (P < 0.001) and the occurrence of acute circulatory failure (RR, 1.64; CI 95%, 1.28-2.11; P < 0.001), metabolic acidosis (RR, 1.79; CI 95%, 1.38-2.32; P < 0.001), renal failure (RR, 1.49; CI 95%, 1.17-1.89; P = 0.001) and thrombocytopenia (RR, 1.33; CI 95%, 1.06-1.68; P = 0.01). CONCLUSIONS: MAP levels of 70 mmHg or higher do not appear to be associated with improved survival in septic shock. Elevating MAP >70 mmHg by augmenting vasopressor dosages may increase mortality. Future trials are needed to identify the lowest acceptable MAP level to ensure tissue perfusion and avoid unnecessary high catecholamine infusions.