857 resultados para hypertrophy muscle
Resumo:
A binding protein displaying broad-spectrum cross-reactivity within the sulfonamide group was used in conjunction with a sulfonamide specific sensor chip and a surface plasmon resonance biosensor to develop a rapid broad spectrum screening assay for sulfonamides in porcine muscle. Results for 40 samples were available in just over 5 h after the completion of a simple sample preparation protocol. Twenty sulfonamide compounds were detected. Acetylated metabolites were not recognised by the binding protein. Limit of detection (mean-three times standard deviation value when n = 20) was calculated to be 16.9 ng g(-1) in tissue samples. Intra-assay precision (n = 10) was calculated at 4.3 %CV for a sample spiked at 50 ng g(-1) with sulfamethazine, 3.6 %CV for a sample spiked at 100 ng g(-1) with sulfamethazine, 7.2 %CV for a sample spiked at 50 ng g(-1) with sulfadiazine and 3.1 %CV for a sample spiked at 100 ng g-1 with sulfadiazine. Inter-assay precision (n = 3) was calculated at 9.7 %CV for a sample spiked at 50 ng g-1 with sulfamethazine, 3.8 %CV for a sample spiked at 100 ng g(-1) with sulfamethazine, 3.5 %CV for a sample spiked at 50 ng g(-1) with sulfadiazine and 2.8 %CV for a sample spiked at 100 ng g(-1) with sulfadiazine. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fruit and vegetable (FV) intake, which is often low in older people, may be associated with improved muscle strength and physical function. However, there is a shortage of intervention trial evidence to support this. The current study examined the effect of increased FV consumption on measures of muscle strength and physical function among healthy, free-living older adults. A randomized controlled intervention study was undertaken. Eighty-three participants aged 65-85 years, habitually consuming =2 portions of FV/day, were randomised to continue their normal diet (=2 portions/day), or to consume =5 portions of FV/day for 16 weeks. FV were delivered to all participants each week, free of charge. Compliance was monitored at baseline, 6, 12 and 16 weeks by diet history and by measuring biomarkers of micronutrient status. Grip strength was measured by a hand-held dynamometer, while lower-extremity physical function was assessed by performance-based measures. Eighty-two participants completed the intervention. The 5 portions/day group showed greater change in daily FV consumption compared to the 2 portions/day group (P?
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.
Resumo:
This study was undertaken to further characterise the fine structural changes occurring in the retinal circulation in early diabetes. The eyes of eight alloxan/streptozotocin and three spontaneously diabetic dogs were examined by trypsin digest and electron microscopy after durations of diabetes of between 1 and 7 years. Basement membrane (BM) thickening in the retinal capillaries was the only obvious fine structural change identified during the first 3 years of diabetes and was established within 1 year of induction. Widespread pericyte loss was noted after 4 years of diabetes and was paralleled by loss of smooth muscle (SM) cells, in the retinal arterioles. SM cell loss was most obvious in the smaller arterioles of the central retina. No microaneurysms were noted in the experimental diabetic dogs with up to 5 years' duration of diabetes but were widespread in a spontaneously diabetic animal at 7 years. This study has shown that SM cell loss, a hitherto unrecognised feature of diabetic microangiopathy, accompanies pericyte loss in the retinal circulation of diabetic dogs.
Resumo:
Objectives: To examine the association between fruit and vegetable (FV) consumption and muscle strength and power in an adolescent population. Methods: We conducted a cross-sectional analysis among 1019 boys and 998 girls, aged 12 and 15 years, who participated in The Young Hearts Project. FV consumption (excluding potatoes) was assessed by 7-d diet history. Grip strength and jump power was assessed with a dynamometer and Jump-MD meter, respectively. Associations between FV consumption and strength and power were assessed by regression modelling. Results: Boys and girls with the highest FV intakes (>237.71 g/d and >267.57 g/d, respectively, based on the highest tertile) had significantly higher jump power than those with the lowest intakes (<135.09 g/d and <147.43 g/d, respectively), after adjustment for confounding factors. Although girls with the highest FV intakes had higher grip strength than those with the lowest intakes, no significant independent associations were evident between FV intake and grip strength in boys or girls. Similar findings were observed when FV were analysed separately.Conclusions: Higher FV consumption in this group of adolescents was positively associated with muscle power. There was no independent association between higher FV consumption and muscle strength. Intervention studies are required to determine whether muscle strength and power can be improved through increased FV consumption.
Resumo:
The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.
Resumo:
Objective: The present investigation has been designed to study the incidence of the rectus stern muscle in German human cadavers dissected in the Kingdom of Saudi Arabia, trying to find a postulation for the development of such muscle when present. Design: Gross dissection of 130 cadavers, of both sexes, was performed throughout a period of 10 years. Setting: Department of Anatomy College of Medicine, King Faisal University, Dammam, Saudi Arabia. Intervention: Investigation of the origin and insertion of the rectus sterni and measurements of its length and width. Results: Two adult cadavers, one of each sex, had shown well-developed bilateral rectus stern muscles. All muscles identified were parasternal in position, being superficial to the medial portion of the pectoralis major muscle. Minor morphological differences were observed among the four muscle masses concerning their length, breadth, origin and insertion. Conclusion: The current study has determined the incidence of the rectus sterni muscle, in German cadavers to be 1.54% per bodies examined compared to 4% in cadavers from Saudis. Such a frequency is compared to that reported in different geographic populations. The rectus sterni muscle is innervated by the anterior cutaneous branches of the intercostal nerves. The description of the rectus sterni muscle and its incidence determined in the present study, might be of a great help for clinicians radiographing or tackling the pectoral region.
Resumo:
The abductor hallucis flap is commonly used as a pedicled flap (distally or proximally based) in the management of ankle, heel, and mid-foot lesions, where it is ideally used for closing defects. This study investigates the anatomical details of this muscle regarding its various forms of insertion and its arterial supply in 15 cadaveric feet. Four types of insertion could be distinguished: type A, insertion at the proximal phalanx of the big toe (46.7%); type B, insertion by two slips into the base of the proximal phalanx and the sesamoid bone (33.3%); type C, insertion at the sesamoid bone (6.7%); And type D, the insertion is divided into superficial tendinous and deep fleshy parts which are attached to the base of the proximal phalanx and to the metatarsophalangeal joint capsule of the big toe, respectively (13.3%). As regards the arterial supply, three patterns were noticed: pattern A (40%) where the medial plantar artery (MPA) is divided into superficial and deep branches that supplied the muscle; pattern B (53.3%) where the MPA failed to produce a deep branch but instead continued as the superficial branch supplying the two ends of the muscle; and pattern C (6.6%) where the MPA continued as a deep branch supplying the muscle. A superficial branch of MPA provided a branch to the abductor hallucis muscle from its proximal part. In two specimens (13.3%), the lateral plantar artery shared in the supply of the most proximal part of the muscle. These results can be useful in determining the appropriate flap design based on the abductor hallucis type of insertion and the pattern of its arterial supply in the patients.
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.