832 resultados para high-intensity femtosecond laser pulse


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A femtosecond laser has been used to asymmetrically modify the cladding of fiber containing long-period gratings. Following modification, devices in single-mode fiber are shown to be capable of sensing the magnitude and direction of bending in one plane by producing blue and red wavelength shifts depending upon the orientation of the bend. The resulting curvature sensitivities were -1.62 and +3.82 nm·m. Devices have also been produced using an elliptical core fiber to study the effects of the cladding modification on the two polarization eigenstates. A cladding modification applied on the fast axis of the fiber is shown to affect the light in the fast axis much more significantly than the light in the orthogonal state; this behavior may ultimately lead to a sensor capable of detecting the direction of bending in two dimensions for applications in shape sensing. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct measurements of the absorbed energy in femtosecond laser inscription in a range of materials is performed. Key absorption parameters are characterized by fitting numerical modelling to measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A femtosecond laser was used to modify a part of the cladding of a standard LPG bend sensor. The device produced wavelength shifts depending upon the direction of bend, thus making a shape sensor. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microchannel was inscribed in the fiber of a ring cavity which was constructed using two 0.1%:99.9% couplers and a 10-m fiber loop. Cavity ring down spectroscopy was used to measure the refractive index (RI) of gels infused into the microchannel. The ring down time discloses a nonlinear increase with respect to RI of the gel and sensitivity up to 300 µs/RI unit and an index resolution of 1.4 × 10 was obtained. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility since it allows complex three dimensional structures to be inscribed and then etched with hydrofluoric acid. Four in-fiber microchannel designs were experimentally investigated using this technique. Device characteristics were evaluated through monitoring the spectral change while inserting index matching oils into each microchannel - a R.I. sensitivity up to 1.55 dB/RIU was achieved. Furthermore, a simple Fabry-Pérot based refractometer with a R.I. sensitivity of 2.75 nm/RIU was also demonstrated. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long Period Gratings (LPG) in standard fibre have been manufactured with a sharply focused near infrared (NIR) femtosecond laser beam. Polarization splitting of the attenuation bands is strongly dependent upon the inscription power.