692 resultados para hexagonal ferrites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zigzag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin S consistent with Lieb’s theorem for bipartite lattices. Triangles have a finite S for all sizes whereas hexagons have S=0 and develop local moments above a critical size of ≈1.5  nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We model the quantum Hall effect in heterostructures made of two gapped graphene stripes with different gaps, Δ1 and Δ2. We consider two main situations, Δ1=0,Δ2≠0, and Δ1=−Δ2. They are different in a fundamental aspect: only the latter features kink states that, when intervalley coupling is absent, are protected against backscattering. We compute the two-terminal conductance of heterostructures with channel length up to 430 nm, in two transport configurations, parallel and perpendicular to the interface. By studying the effect of disorder on the transport along the boundary, we quantify the robustness of kink states with respect to backscattering. Transport perpendicular to the boundary shows how interface states open a backscattering channel for the conducting edge states, spoiling the perfect conductance quantization featured by the homogeneously gapped graphene Hall bars. Our results can be relevant for the study of graphene deposited on hexagonal boron-nitride, as well as to model graphene with an interaction-driven gapped phase with two equivalent phases separated by a domain wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente dissertação teve como objetivo o desenvolvimento de uma torre de vigilância como sistema expedito de observação e apoio no cumprimento de missões do Exército Português. O estudo desta teve obrigatoriamente em conta a obtenção de uma estrutura final o mais otimizada possível, cuja etapa inicial passou necessariamente pelo levantamento e conhecimento das estruturas semelhantes já existente. A solução encontrada traduziu-se numa estrutura modular e portátil constituída por uma cabine hexagonal capaz de se colocar em funcionamento a alturas entre os 2 e os 12 metros. Para a sua modelação efetuou-se o estudo de todos os critérios de dimensionamento tendo em atenção não só o Estado Limite Último como o Estado Limite de Serviço por forma a garantir o conforto de utilização além da essencial segurança estrutural. Após conclusão dessa etapa e identificação dos esforços condicionantes, foram efetuadas todas as verificações de segurança que levaram necessariamente à alteração de alguns elementos inicialmente definidos. Devido ao facto da estrutura poder ser utilizada com diversas alturas, foi necessário garantir que todos os elementos constituintes na mesma se encontrem em segurança em qualquer das possibilidades, contribuindo assim, para a elaboração do processo de montagem e desmontagem da estrutura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complex of mineralogical techniques used in studies of near-surface layer hemipelagic sediments indicates that disordered todorokite and hexagonal birnessite dominate in manganese micronodules, whereas hexagonal birnessite is the main phase of micronodules from miopelagic sediments. Content of todorokite increases downward through the miopelagic sedimentary sequence; this can be reasonably explained by transformations of some other manganese minerals to todorokite. Occurrence of several manganese minerals in studied samples may reflect temporal and lateral variations in C_org content in sediments and respective local fluctuations in environmental conditions (pH, Eh, geochemical activity of Mn, etc.). Todorokite may have formed under the most anoxic conditions near the water-sediment interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first success in the preparation of rare earth hydroxycarbonate thin films has been achieved. Cerium hydroxycarbonate films were prepared by a hydrothermal deposition method, the sample of a single orthorhombic phase was deposited at a lower temperature while those of orthorhombic and hexagonal phases were obtained at higher temperatures. The crystals in the films could be ellipsoidal, prismatic, or rhombic, depending on the deposition conditions applied. The thin films could be candidates for developing novel optical materials and for advanced ceramics processing. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase evolution during the mechanical alloying of Mo and Si elemental powders with a ternary addition of Al, Mg, Ti or Zr was monitored using X-ray diffraction. Rietveld analysis was used to quantify the phase proportions. When Mo and Si are mechanically alloyed in the absence of a ternary element, the tetragonal C11b polymorph of MoSi2 (t-MoSi2) forms by a self-propagating combustion reaction. With additional milling, the tetragonal phase transforms to the hexagonal C40 structure (h-MoSi2). The mechanical alloying of Al, Mg and Ti additions with Mo and Si tend to promote a more rapid transformation of t-MoSi2 to h-MoSi2. In high concentrations, the addition of these ternary elements inhibits the initial combustion reaction, instead promoting the direct formation of h-MoSi2. The addition of Zr tends to stabilise the tetragonal phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computer model of the mechanical alloying process has been developed to simulate phase formation during the mechanical alloying of Mo and Si elemental powders with a ternary addition of Al, Mg, Ti or Zr. Using the Arhennius equation, the model balances the formation rates of the competing reactions that are observed during milling. These reactions include the formation of tetragonal C11(b) MOSi2 (t-MoSi2) by combustion, the formation of the hexagonal C40 MoSi2 polymorph (h-MoSi2), the transformation of the tetragonal to the hexagonal form, and the recovery of t-MoSi2 from h-MoSi2 and deformed t-MoSi2. The addition of the ternary additions changes the free energy of formation of the associated MoSi2 alloys, i.e. Mo(Si, Al)(2), Mo(Mg, Al)(2), (Mo, Ti)Si-2 (Mo, Zr)Si-2 and (Mo, Fe)Si-2, respectively. Variation of the energy of formation alone is sufficient for the simulation to accurately model the observed phase formation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M, such that S is contained in no other perfect matching of G. This notion has arisen in the study of finding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name defining set, and for Latin squares under the name critical set. There is some study of forcing sets of hexagonal systems in the context of chemistry, but only a few other classes of graphs have been considered. For the hypercubes Q(n), it turns out to be a very interesting notion which includes many challenging problems. In this paper we study the computational complexity of finding the forcing number of graphs, and we give some results on the possible values of forcing number for different matchings of the hypercube Q(n). Also we show an application to critical sets in back circulant Latin rectangles. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyses the formation of 2-acetolactate and 2-aceto-2-hydroxybutyrate as the first step in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. The enzyme is inhibited by a wide range of substituted sulfonylureas and imidazolinones and many of these compounds are used as commercial herbicides. Here, the crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of Arabidopsis thaliana AHAS in complex with the sulfonylurea herbicide chlorimuron ethyl are reported. This is the first report of the structure of any plant protein in complex with a commercial herbicide. Crystals diffract to 3.0 Angstrom resolution, have unit-cell parameters a = b = 179.92, c = 185.82 Angstrom and belong to space group P6(4)22. Preliminary analysis indicates that there is one monomer in the asymmetric unit and that these are arranged as pairs of dimers in the crystal. The dimers form a very open hexagonal lattice, with a high solvent content of 81%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudo-ternary phase diagrams of the polar lipids Quil A, cholesterol (Chol) and phosphatidylcholine (PC) in aqueous mixtures prepared by the lipid film hydration method (where dried lipid film of phospholipids and cholesterol are hydrated by an aqueous solution of Quil A) were investigated in terms of the types of particulate structures formed therein. Negative staining transmission electron microscopy and polarized light microscopy were used to characterize the colloidal and coarse dispersed particles present in the systems. Pseudo-ternary phase diagrams were established for lipid mixtures hydrated in water and in Tris buffer (pH 7.4). The effect of equilibration time was also studied with respect to systems hydrated in water where the samples were stored for 2 months at 4degreesC. Depending on the mass ratio of Quil A, Chol and PC in the systems, various colloidal particles including ISCOM matrices, liposomes, ring-like micelles and worm-like micelles were observed. Other colloidal particles were also observed as minor structures in the presence of these predominant colloids including helices, layered structures and lamellae (hexagonal pattern of ring-like micelles). In terms of the conditions which appeared to promote the formation of ISCOM matrices, the area of the phase diagrams associated with systems containing these structures increased in the order: hydrated in water/short equilibration period < hydrated in buffer/short equilibration period < hydrated in water/prolonged equilibration period. ISCOM matrices appeared to form over time from samples, which initially contained a high concentration of ring-like micelles suggesting that these colloidal structures may be precursors to ISCOM matrix formation. Helices were also frequently found in samples containing ISCOM matrices as a minor colloidal structure. Equilibration time and presence of buffer salts also promoted the formation of liposomes in systems not containing Quil A. These parameters however, did not appear to significantly affect the occurrence and predominance of other structures present in the pseudo-binary systems containing Quil A. Pseudo-ternary phase diagrams of PC, Chol and Quil A are important to identify combinations which will produce different colloidal structures, particularly ISCOM matrices, by the method of lipid film hydration. Colloidal structures comprising these three components are readily prepared by hydration of dried lipid films and may have application in vaccine delivery where the functionality of ISCOMs has clearly been demonstrated. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lanthanum hydroxycarbonate crystals with controlled phases and varied morphologies were prepared on the surface of a non-crystalline substrate, glass. The phases and morphologies of the crystals were controlled conveniently by varying the reaction temperature and the quantity of starting materials. Orthorhombic crystals were obtained at 160 degreesC, distributed individually on the substrate and had a flaky rhombic shape. Hexagonal crystals were obtained at 180 degreesC. The crystals had a rhomboidal shape, were uniform and continuous enough to form a solid film on the substrate. The substrates were corroded under the hydrothermal conditions and offered a coarse surface for the crystal growth. The hexagonal lanthanum hydroxycarbonate was discovered to show significant second harmonic generation, which would be of interest for developing novel optical materials. (C) 2004 Elsevier Inc. All rights reserved.