987 resultados para heavy ion collisions
Resumo:
In the range of temperatures reached in future heavy ion collision experiments, hadronic pair annihilations and creations of charm quarks may take place within the lifetime of the plasma. As a result, charm quarks may increase the bulk viscosity affecting the early stages of hydrodynamic expansion. Assuming thermalisation, we estimate the charm contribution to bulk viscosity within the same effective kinetic theory framework in which the light parton contribution has been computed previously. The time scale at which this physics becomes relevant is related to the width of the transport peak associated with the trace anomaly correlator and is found to be ≲20 fm/c for T≳600 MeV.
Resumo:
This thesis presents a task-oriented approach to telemanipulation for maintenance in large scientific facilities, with specific focus on the particle accelerator facilities at European Organization for Nuclear Research (CERN) in Geneva, Switzerland and GSI Helmholtz Centre for Heavy Ion Research (GSI) in Darmstadt, Germany. It examines how telemanipulation can be used in these facilities and reviews how this differs from the representation of telemanipulation tasks within the literature. It provides methods to assess and compare telemanipulation procedures as well a test suite to compare telemanipulators themselves from a dexterity perspective. It presents a formalisation of telemanipulation procedures into a hierarchical model which can be then used as a basis to aid maintenance engineers in assessing tasks for telemanipulation, and as the basis for future research. The model introduces a new concept of Elemental Actions as the building block of telemanipulation movements and incorporates the dependent factors for procedures at a higher level of abstraction. In order to gain insight into realistic tasks performed by telemanipulation systems within both industrial and research environments a survey of teleoperation experts is presented. Analysis of the responses is performed from which it is concluded that there is a need within the robotics community for physical benchmarking tests which are geared towards evaluating the dexterity of telemanipulators for comparison of their dexterous abilities. A three stage test suite is presented which is designed to allow maintenance engineers to assess different telemanipulators for their dexterity. This incorporates general characteristics of the system, a method to compare kinematic reachability of multiple telemanipulators and physical test setups to assess dexterity from a both a qualitative perspective and measurably by using performance metrics. Finally, experimental results are provided for the application of the proposed test suite onto two telemanipulation systems, one from a research setting and the other within CERN. It describes the procedure performed and discusses comparisons between the two systems, as well as providing input from the expert operator of the CERN system.
Resumo:
Successful micro and nano-particle patterning on iron doped lithium niobate waveguides using photovoltaic fields is reported. This technique previously used in bulk crystals is here applied to waveguide configuration. Well defined particle patterns are obtained using two types of planar waveguides (by proton exchanged and swift heavy ion irradiation) and metallic and dielectric neutral particles. The use of waveguide configuration has allowed a reduction of the light exposure time until 3 s, two orders of magnitude smaller than typical values used in bulk.
Resumo:
A medida que se incrementa la energía de los aceleradores de partículas o iones pesados como el CERN o GSI, de los reactores de fusión como JET o ITER, u otros experimentos científicos, se va haciendo cada vez más imprescindible el uso de técnicas de manipulación remota para la interacción con el entorno sujeto a la radiación. Hasta ahora la tasa de dosis radioactiva en el CERN podía tomar valores cercanos a algunos mSv para tiempos de enfriamiento de horas, que permitían la intervención humana para tareas de mantenimiento. Durante los primeros ensayos con plasma en JET, se alcanzaban valores cercanos a los 200 μSv después de un tiempo de enfriamiento de 4 meses y ya se hacía extensivo el uso de técnicas de manipulación remota. Hay una clara tendencia al incremento de los niveles de radioactividad en el futuro en este tipo de instalaciones. Un claro ejemplo es ITER, donde se esperan valores de 450 Sv/h en el centro del toroide a los 11 días de enfriamiento o los nuevos niveles energéticos del CERN que harán necesario una apuesta por niveles de mantenimiento remotos. En estas circunstancias se enmarca esta tesis, que estudia un sistema de control bilateral basado en fuerza-posición, tratando de evitar el uso de sensores de fuerza/par, cuyo contenido electrónico los hace especialmente sensitivos en estos ambientes. El contenido de este trabajo se centra en la teleoperación de robots industriales, que debido a su reconocida solvencia y facilidad para ser adaptados a estos entornos, unido al bajo coste y alta disponibilidad, les convierte en una alternativa interesante para tareas de manipulación remota frente a costosas soluciones a medida. En primer lugar se considera el problema cinemático de teleoperación maestro-esclavo de cinemática disimilar y se desarrolla un método general para la solución del problema en el que se incluye el uso de fuerzas asistivas para guiar al operador. A continuación se explican con detalle los experimentos realizados con un robot ABB y que muestran las dificultades encontradas y recomendaciones para solventarlas. Se concluye el estudio cinemático con un método para el encaje de espacios de trabajo entre maestro y esclavo disimilares. Posteriormente se mira hacia la dinámica, estudiándose el modelado de robots con vistas a obtener un método que permita estimar las fuerzas externas que actúan sobre los mismos. Durante la caracterización del modelo dinámico, se realizan varios ensayos para tratar de encontrar un compromiso entre complejidad de cálculo y error de estimación. También se dan las claves para modelar y caracterizar robots con estructura en forma de paralelogramo y se presenta la arquitectura de control deseada. Una vez obtenido el modelo completo del esclavo, se investigan diferentes alternativas que permitan una estimación de fuerzas externas en tiempo real, minimizando las derivadas de la posición para minimizar el ruido. Se comienza utilizando observadores clásicos del estado para ir evolucionando hasta llegar al desarrollo de un observador de tipo Luenberger-Sliding cuya implementación es relativamente sencilla y sus resultados contundentes. También se analiza el uso del observador propuesto durante un control bilateral simulado en el que se compara la realimentación de fuerzas obtenida con las técnicas clásicas basadas en error de posición frente a un control basado en fuerza-posición donde la fuerza es estimada y no medida. Se comprueba como la solución propuesta da resultados comparables con las arquitecturas clásicas y sin embargo introduce una alternativa para la teleoperación de robots industriales cuya teleoperación en entornos radioactivos sería imposible de otra manera. Finalmente se analizan los problemas derivados de la aplicación práctica de la teleoperación en los escenarios mencionados anteriormente. Debido a las condiciones prohibitivas para todo equipo electrónico, los sistemas de control se deben colocar a gran distancia de los manipuladores, dando lugar a longitudes de cable de centenares de metros. En estas condiciones se crean sobretensiones en controladores basados en PWM que pueden ser destructivas para el sistema formado por control, cableado y actuador, y por tanto, han de ser eliminadas. En este trabajo se propone una solución basada en un filtro LC comercial y se prueba de forma extensiva que su inclusión no produce efectos negativos sobre el control del actuador. ABSTRACT As the energy on the particle accelerators or heavy ion accelerators such as CERN or GSI, fusion reactors such as JET or ITER, or other scientific experiments is increased, it is becoming increasingly necessary to use remote handling techniques to interact with the remote and radioactive environment. So far, the dose rate at CERN could present values near several mSv for cooling times on the range of hours, which allowed human intervention for maintenance tasks. At JET, they measured values close to 200 μSv after a cooling time of 4 months and since then, the remote handling techniques became usual. There is a clear tendency to increase the radiation levels in the future. A clear example is ITER, where values of 450 Sv/h are expected in the centre of the torus after 11 days of cooling. Also, the new energetic levels of CERN are expected to lead to a more advanced remote handling means. In these circumstances this thesis is framed, studying a bilateral control system based on force-position, trying to avoid the use of force/torque sensors, whose electronic content makes them very sensitive in these environments. The contents of this work are focused on teleoperating industrial robots, which due its well-known reliability, easiness to be adapted to these environments, cost-effectiveness and high availability, are considered as an interesting alternative to expensive custom-made solutions for remote handling tasks. Firstly, the kinematic problem of teloperating master and slave with dissimilar kinematics is analysed and a new general approach for solving this issue is presented. The solution includes using assistive forces in order to guide the human operator. Coming up next, I explain with detail the experiments accomplished with an ABB robot that show the difficulties encountered and the proposed solutions. This section is concluded with a method to match the master’s and slave’s workspaces when they present dissimilar kinematics. Later on, the research studies the dynamics, with special focus on robot modelling with the purpose of obtaining a method that allows to estimate external forces acting on them. During the characterisation of the model’s parameters, a set of tests are performed in order to get to a compromise between computational complexity and estimation error. Key points for modelling and characterising robots with a parallelogram structure are also given, and the desired control architecture is presented. Once a complete model of the slave is obtained, different alternatives for external force estimation are review to be able to predict forces in real time, minimizing the position differentiation to minimize the estimation noise. The research starts by implementing classic state observers and then it evolves towards the use of Luenberger- Sliding observers whose implementation is relatively easy and the results are convincing. I also analyse the use of proposed observer during a simulated bilateral control on which the force feedback obtained with the classic techniques based on the position error is compared versus a control architecture based on force-position, where the force is estimated instead of measured. I t is checked how the proposed solution gives results comparable with the classical techniques and however introduces an alternative method for teleoperating industrial robots whose teleoperation in radioactive environments would have been impossible in a different way. Finally, the problems originated by the practical application of teleoperation in the before mentioned scenarios are analysed. Due the prohibitive conditions for every electronic equipment, the control systems should be placed far from the manipulators. This provokes that the power cables that fed the slaves devices can present lengths of hundreds of meters. In these circumstances, overvoltage waves are developed when implementing drives based on PWM technique. The occurrence of overvoltage is very dangerous for the system composed by drive, wiring and actuator, and has to be eliminated. During this work, a solution based on commercial LC filters is proposed and it is extensively proved that its inclusion does not introduce adverse effects into the actuator’s control.
Resumo:
The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.
Resumo:
Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a ultra-high dose rate comparing them with standard dose rate. In this regard, a radioresistant SK-MEL-28 cell line were irradiated with x-ray in order to have a total dose of 2 and 4 Gy, at two different dose rate. The ultra-high dose rate is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles, in this case, we focused our study on the influence of X-rays. While a low dose rate is obtained with conventional X-ray tube. In this study it results that a ultra-high dose rate enhances radiosensitivity of melanoma cells while reducing the adhesion, proliferation and migration ability of cells.
Resumo:
As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master’s thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master’s thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with ~97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen’s University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX) techniques, were also performed on large (200nm+) non-stoichiometric oxides embedded within the austenite steel grains, in an attempt to quantify the elemental compositional changes during high temperature (520oC) heavy ion irradiation.
Resumo:
Ab initio self-consistent DFS calculations are performed for five different symmetric atomic systems from Ar-Ar to Pb-Pb. The level structure for the {2p_\pi}-{2p_\sigma} crossing as function of the united atomic charge Z_u is studied and interpreted. Manybody effects, spin-orbit splitting, direct relativistic effects as well as indirect relativistic effects are differently important for different Z_u. For the I-I system a comparison with other calculations is given.
Resumo:
Due to the tremendous spin-orbit splitting of quasi-molecular levels in superheavy collision systems (Z = Z_1 + Z_2 {\ge\approx} 137) bombarding energy 0.5-6 MeV N{^-1}, unusual couplings may occur around Z \simeq 165. Experimental evidence for such a theoretically predicted coupling is discussed.
Resumo:
A generic approach towards tailoring of ion species composition in reactive plasmas used for nanofabrication of various functional nanofilms and nanoassemblies, based on a simplified model of a parallel-plate rf discharge, is proposed. The model includes an idealized reactive plasma containing two neutral and two ionic species interacting via charge exchange collisions in the presence of a microdispersed solid component. It is shown that the number densities of the desired ionic species can be efficiently managed by adjusting the dilution of the working gas in a buffer gas, rates of electron impact ionization, losses of plasma species on the discharge walls, and surfaces of fine particles, charge exchange rates, and efficiency of three-body recombination processes in the plasma bulk. The results are relevant to the plasma-aided nanomanufacturing of ordered patterns of carbon nanotip and nanopyramid microemitters.